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1 Introduction

Time series are essential in statistics, economics, quantitative finance,

engineering, and many other areas. Time series analysis is used in many

applications, such as economic forecasting, budgetary analysis, stock market

analysis, process and quality control, inventory studies, etc. A time series

could be defined as a sequence taken at successive equally spaced time points.

The main goals of their analysis are forecasting, anomaly detection, cluster-

ing, classification, and query by content.

Researchers normally use classical linear models for time series analysis,

with equal frequencies for all variables. Sadly, many important macroeco-

nomic indicators are not sampled at the same frequency, and this may be an

issue since standard forecasting models require equally spaced time intervals.

However, Mixed Data Sampling (MIDAS) is an approach that can resolve this

issue. It is a relatively unexplored econometric regression or filtering method
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developed by Eric Ghysels, Pedro Santa-Clara, and Rossen Valkanov in 2004,

where the independent variable(s) appear more frequently than the depen-

dent variable. Their work focused primarily on volatility predictions, but has

also proven to be useful for macroeconomic modeling.

The MIDAS models have been used in recent literature, such as in Clements

and Galvão (2008) and Marcellino and Schumacher (2010), to improve the

accuracy of predictions of quarterly GDP with monthly indicators for the

United States and Germany, respectively. More recently, the specific usage

of financial data paired with the MIDAS model to forecast GDP growth in the

United States has been explored in Andreou et al. (2013). In short, these

articles have concluded that the use of mixed frequency data significantly

improves forecast accuracy.

Limitations to data availability is often a problem; for example, many

research centres in the world cannot provide monthly information about the

Gross Domestic Product (GDP), but they can for the Cost of Imports (CIM).

They can provide the quarterly information about GDP, so there are missing

values for GDP. A natural question is coming up – how do we examine the

relationship between the high and low frequency variables? One possibility

would be to calculate the arithmetic mean of the observations that occur

between the lower frequency samples. This approach would imply equal

slopes on each of the individual observations, which is an assumption that

may be violated in many cases. For instance, more recent data are usually

more informative. In this case, recent data should be assigned a higher weight
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than earlier data. A simple linear regression using each daily value of the

predictor variable as an individual regressor would require estimating a large

number of parameters, thus leading to high estimation uncertainty.

Another motivating example is the following regression model for the

risk-return trade-off:

Rt+1 = µ+ γσ̂2
t + εt+1 (1)

where Rt+1 is the excess return on the market in month t+ 1, and σ̂2
t is the

forecasted variance of returns for the same month t+1, based on information

know at time t.

Normally, extra values for the high-frequency variable(s) will be available

after the most recent sample value of the low-frequency dependent variable

has been observed. In this case, these extra observations can be used as

well, so we have the potential for what is usually termed ”now-casting” in

the forecasting literature. The hope is that incorporating this extra high-

frequency information will improve the forecasting performance of the model.

The MIDAS approach allows regressors with different sampling frequen-

cies and are therefore not autoregressive (AR) models, since the notion of

autoregression implicitly assumes that data are sampled at the same fre-

quency in the past. Instead, MIDAS regressions share some features with

distributed lag models but also have unique novel features. The distributed

lag model is a regression of the following form:

Yt = β0 +B(L)Xt + εt (2)
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where B(L) is a finite or infinite lag polynomial operator, usually parame-

terized by a small set of hyperparameters.

In this paper, our goal is to study and implement the MIDAS regression

model in order to predict the GDP using data from the Bureau of Economic

Statistics from year 2009. The paper is organized as follows. In Section 2, we

provide a detailed explanation of the methodology. We provide a description

of the MIDAS regression model, together with its underlying probability

distributions and parameters involved in the equation. In Section 3, we give

a description of the data set used in this study. We explain why it is necessary

to seasonally adjust the data and the possible ways to do it. We also explain

the importance of stationarizing a time series, as well as the possible presence

of unit roots and their detection. In Section 4, we provide the R code used

in our analysis, together with the results.

2 Methodology

A simple forecasting model of the economy involves Ordinary Least-

Squares (OLS) regression of GDP on its time lags, as well as on another

related economic variable such as consumer prices, unemployment, or stock

prices, and the related variable’s lag:

Yt = β0 +

p∑
i=1

(βiYt−i + γiXt−i) + εt (3)
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where Yt is GDP, Xt is the related economic variable, and εt is an error term

of zero mean and constant variance at time t. We can use data up to time t

to predict the value of Y at time t+ 1.

However, time series data is often available at different frequencies. For

example, the dependent variable, Y , is only published every quarter, whereas

X is often higher frequency. CPI and unemployment data are available three

times as often as GDP at monthly frequency, and stock prices are available

intra-day. The simplest and most common method of dealing with different

frequencies is to aggregate or average data so that all variables are at the

lowest frequency. In this case, the quarterly averages of the high-frequency

variable would be used as the regressor X in Equation (3). This method is

equivalent to a restricted Least Squares regression where the coefficients on

high-frequency lags of X are equal within the same quarter, which is the low-

frequency period. However, such a model may not be ideal, as it essentially

ignores the additional information provided by higher-frequency availability

of certain data.

An alternative way to incorporate the high-frequency data is to simply

regress Y on its own low-frequency lags as well as all of the high-frequency

lags of X over the same horizon:

YtLF = β0 +

p∑
i=1

βiYtLF−i +
n∗m∑
k=1

γkXtHF−k + εtLF (4)

where m is the number of high-frequency periods contained in each low-
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frequency period, and n is the number of low-frequency periods for which we

want lags of X. Low and high frequency time periods are denoted as tLF

and tHF , respectively. For the remainder of the methodology discussion, we

will drop the constant and lag-dependent-variable terms from the regression

equation, as they do not change across model specifications.

While Equation (4) allows for unique coefficient estimates for every single

high and low frequency observation, there exist potential complications due

to the proliferation of regressors. For example, if there are 60 daily stock price

observations for every quarter, then a GDP forecasting model with only two

quarter lags would already have 123 parameters to be estimated. This results

in low degrees of freedom especially for time series without a long history,

and it makes statistical inference imprecise. Furthermore, if close-together

high-frequency lags are strongly correlated, the model will also suffer from

multicollinearity problems. In order to reduce number of parameters, within-

quarter effects could be restricted to be the same across all quarters:

YtLF = ...+
n∑

j=1

τj(
m∑
k=1

γkXtHF−k)tLF−j + εtLF (5)

However, in the stock price example, even this specification would require 65

parameters to be estimated for only two quarters of lags.
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2.1 MIDAS regressions

The Mixed-data sampling (MIDAS) regression model is proposed by Ghy-

sels, Santa-Clara, and Valkanov (2004) as a way to preserve information

from high-frequency data while addressing parameter proliferation and mul-

ticollinearity problems. The MIDAS regression is based on a distributed lag

model; instead of estimating the coefficient on each lag of the high-frequency

regressor, the model instead assigns weights to the lags according to a poly-

nomial function. The basic MIDAS model is as follows:

YtLF = ...+ γ
n∗m∑
k=1

f(k;θ)XtHF−k + εtLF (6)

where f(k;θ) is a polynomial function of the lag number k, and θ is a small

set of hyperparameters which govern the shape of the function. Because the

lags are weighted according to the function, the coefficient estimates on the

weighted lags are then restricted to an equal value γ. Thus, the MIDAS

model can be estimated with far fewer parameters than in Equations (4) or

(5), i.e. only γ and θ.

The function f(k;θ) can in practice be any type of polynomial function.

Two common functional forms are the beta formulation and the exponential

Almon function. Graphs of these functions from Armesto, Engemann, and

Owyang (2010), based on selected values for two hyperparameters θ1 and θ2,

are shown in Figure 1.

Based on these common functions, weights tend to decline as the high-
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Figure 1: Lag weighting functions for MIDAS model

frequency lag increases, possibly with a hump-shape in more recent periods.

The intuition behind the overall downward slope is that the effect of regressor

data will likely diminish as it moves further into the past; however, recent

movements in the regressor may take also take some time to pass through to

movements in the dependent variable, leading to the hump-shape.

A useful feature of MIDAS regressions is that they can be used to fore-

cast the dependent variable in the current low-frequency period using the

availability of the high-frequency regressor data; this practice is known as

now-casting. We add a term to the basic MIDAS model which incorporates

the high-frequency lags of the regressor between the present and the begin-

ning of the current low-frequency period. Thus, for the dth high-frequency

period in the current low-frequency period, the regression is as follows:
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YtLF |d = ...+γ1

m∑
j=m−d+1

f(k;θ1)XtHF+1−j+γ2

n∗m∑
k=d+1

f(k;θ2)XtHF−k+εtLF (7)

The additional term in Equation (7) means that effects of data from the

current low-frequency period are estimated separately from previous periods

using γ1 and θ1. Equations (7) and (6) are equivalent in the case that γ1 = γ2

and θ1 = θ2.

3 Data

We apply MIDAS modelling techniques to economic data by showing

how a country’s Gross Domestic Product (GDP), a quarterly time series

variable, can be forecast using monthly variables such as consumer prices

and unemployment. We perform this exercise for data on the United States

from 1980Q1 to 2017Q4.

Our data on real GDP in chained 2009 dollars comes from the Bureau

of Economic Statistics at a quarterly frequency. In contrast, all of our ex-

planatory variables are available at a monthly frequency. From the Bureau

of Labor Statistics, we take the urban Consumer Price Index (CPI), exclud-

ing food and energy, as our measure of core consumer prices, as well as the

civilian unemployment rate.
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3.1 Seasonal adjustment

Often, time series data will exhibit seasonal patterns which repeat ev-

ery year but are irrelevant for policy analysis purposes. These patterns may

reflect the seasonal weather cycle or annual holidays. For example, GDP

tends to be lower in the fourth quarter of the year as production stops for

the Christmas holidays, while unemployment also tends to be lower due to

seasonal hires. If we try to model the two time series without seasonal adjust-

ment, the model may wrongly suggest a positive relationship between GDP

and unemployment. In fact, this relationship is being driven by seasonal

phenomena such as Christmas and as such the effect is not economically rel-

evant. This is an example of omitted variable bias and may cause spurious

correlation.

It may therefore be useful to seasonally adjust data such that all the

effects of seasonal patterns are removed. Two common methods of seasonal

adjustment are X-12-ARIMA and X-13-ARIMA, developed by the US Census

Bureau. Broadly speaking, these methods use moving averages to decompose

time series data into seasonal, trend, non-seasonal cycle, and idiosyncratic

components. The seasonal component is then extracted out of the data.

For the exercise in this paper, most of our data comes from US statistical

agencies and is already seasonally adjusted at the source. The sole exception

is for consumer price data, which we seasonally adjust ourselves using X-13-

ARIMA.
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3.2 Stationarity and first-differences

When doing time series analysis, we also want to ensure that all vari-

ables are stationary, meaning that they have a constant mean and variance

over time. A non-stationary time series may possess a deterministic or nat-

ural time trend, or it may have a unit root. Roots are parameters of the

variable’s underlying autoregressive (AR) process that determine how the

variable moves based on past values. Given a variable’s equilibrium ”steady

state” value, a root equal to one, known as a unit root, means that move-

ments of away from the equilibrium will become permanent so that there

is no time-invariant mean. In contrast, a root between zero and one means

that the variable will converge back to the equilibrium value over time, re-

sulting in a constant mean. If a time series has a root greater than one, also

known as an explosive root, it will also be non-stationary; however, this is

an uncommon phenomenon in economic data.

Non-stationary time series can be spuriously correlated. Seemingly sig-

nificant relationships can in actuality be explained either by a natural time

trend, or simply because the variables exhibit similar AR processes and there-

fore move together. For example, a regression of infant mortality rates on

the population of endangered whales would produce positive coefficient es-

timates. However, this relationship exists only because both variables are

non-stationary and happen to both be declining; killing more whales would

certainly not prevent infant deaths, nor would killing babies save the whales.

There exist common statistical tests which the presence of a unit root.
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These tests either treat the unit root as the null hypothesis, such as the

Dickey-Fuller test, or as the alternative hypothesis, such as the KPSS test.

Non-stationary variables, whether or not they possess unit roots, can usually

be made stationary by taking the first difference of the data, or the first

difference of the natural log, depending on whether there is an exponential

time trend. For the exercise in this paper, we make our data stationary by

taking the first difference of the natural log of GDP and core CPI, and the

first difference of the unemployment rate stock prices.

4 Nowcasting real GDP

4.1 Method

Many time-sensitive policy decisions rely heavily on infrequent data. Of-

ten, policy-makers obtain these essential data with a lag. Moreover, this

data can be subject to revisions. Finally, some data is released at different

times and at different frequencies (for example, data on inflation and unem-

ployment are released on a monthly frequency while GDP is released on a

quarterly frequency). Generating now-casts of key economic variables based

on more readily available data serves as a useful exercise to perform policy

decisions.

To illustrate an application of the MIDAS model, we develop a now-

casting model to examine current levels of real GDP. Real GDP is a key input

to many economic decisions, such as monetary policy, government budgeting
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and business planning. However, real GDP is released on a quarterly basis

in most countries. On the other hand, other indicators of economic activity,

such as industrial production, unemployment, inflation, and stock prices are

released at a monthly (or higher) frequency.

To evaluate the predictive power of our model, we compare the forecasts

made by the MIDAS model to a regular OLS using a simple weighted average

of the high-frequency variables. The model is estimated iteratively using an

out-of-sample, rolling window forecast. This is done as follows. first, the

model is estimated starting in 1980Q1 to the quarter preceding the nowcast

quarter. The nowcast is then generated using the observations of the high-

frequency variable in that quarter. The nowcast is then compared to the

actual value using the root mean squared error (RMSE) 1.

4.2 Unemployment

The graph below compares the nowcasts generated using the unemploy-

ment rate for real GDP generated using MIDAS and using OLS. The actual

real GDP reading in red, the MIDAS forecast in green and the OLS forecast

in blue. In this example, the MIDAS model and OLS model seem visually

similar. Comparing the RMSEs, the MIDAS model provides a marginal gain

of about 5% over the OLS model.

1RMSE is a measure of model accuracy which equals the sum of the squared differences
between the model’s predicted values for the dependent variable and the actual realized

values. RMSE =

√∑N
i=1 ŷi−yi

N
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Figure 2: Nowcasts using unemployment

4.3 Inflation

Using the MIDAS model with seasonally-adjusted inflation as the ex-

planatory variable, on the other hand, provides a much better nowcast for

GDP than OLS. The chart below shows that while the OLS and MIDAS
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model are broadly similar in most periods, the MIDAS model tends to better

predict declines in real GDP. In particular, this is evident in the recessions

occurring in the 2000s (2001 and 2008). This is reflected in the lower RMSE

for the MIDAS model, which shows an 13% gain over the OLS model.

Figure 3: Nowcast using inflation
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5 Conclusion

MIDAS models are a useful tool for forecasting low-frequency variables

using higher-frequency data. They incorporate the additional information

provided by higher-frequency data, unlike models which merely aggregate

data to the lowest frequency. However, they also avoid the problems of

parameter proliferation, multicollinearity, and low degrees of freedom that

would arise from estimating parameters for many high-frequency lags. The

MIDAS model does this by calculating weights for the lags using a polynomial

function governed by a small number of parameters. Generally, the function

suggests decreasing weights as the lags go further back in time. MIDAS

models can also be used for now-casting the dependent variable in the current

period.

We apply the MIDAS model to economic data, using monthly consumer

prices and unemployment rates to forecast quarterly GDP. We seasonally

adjust and make stationary the variables to avoid spurious correlation. We

compare the MIDAS model forecasts to forecasts using a simple OLS re-

gression where the the high-frequency variables are averaged to the lower

frequency. According to the models’ root mean squared errors, the MIDAS

model outperforms OLS for both CPI and unemployment.
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6 Responsibilities for each section

Dina Introduction and lit review

Alex Methodology and data description

Doga Application and R-code
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7 Appendix: R Code

###########################

### Group project ###

### Dina Jankovic ###

### Alexander Lam ###

### Doga Bilgin ###

### Topic: Time series ###

###########################

rm(list = ls())

setwd("C:/Users/Helin/Documents/Classes/Carleton/Data Mining I/Group Project")

#### Required libraries, setup, required functions ####

#libraries

if (FALSE){ #Change to TRUE to install packages

install.packages("seasonal")

install.packages("midasr")

install.packages("lubridate")

install.packages("data.table")

install.packages("ggplot2")

}
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library(data.table)

library(seasonal)

library(midasr)

library(lubridate)

library(ggplot2)

#functions

rmse <- function(x,y){sqrt(mean((x-y)^2))}

#dates, in quarters

est_st <- c(1980,1)

est_end <- c(1990,4)

rmse_st <- c(1991,1)

rmse_end <- c(2017,4)

#### Importing Data ####

#initialize lists

data <- NULL

us <- NULL

ca <- NULL

#set up data files for Canada and the US, by frequency
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for (freq in c("q","m","w")){

data[[freq]] <- data.table(read.csv(

paste("./Data/",freq,".csv",sep="")

,na.strings = "#N/A"))

if (freq=="q") {

f <- 4

st <- c(1945,1)

} else if (freq=="m") {

f <- 12

st <- c(1945,1)

} else if (freq=="w") {

f <- 365.25/7

st <- decimal_date(ymd("1945-01-05"))

} else {

print("unused frequency")

}

data[[freq]] <- data[[freq]][,-1]

data[[freq]] <- ts(data[[freq]],frequency=f,start=st)

us[[freq]] <- data[[freq]][,-c(grep("ca",colnames(data[[freq]])))]

ca[[freq]] <- data[[freq]][,-c(grep("us",colnames(data[[freq]])))]

}
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rm(data,f,st)

#### MIDAS estimation ####

for (var in c("uscpix_nsa","usunemp")){

#variables to use

y <- 100*log(us$q)

#seasonal adjustment

if (var == "uscpix_nsa"){

x <- 100*log(us$m[,var])

y <- final(seas(y,x11=""))

x <-window(final(seas(x,x11=""))

,start=start(x),end=end(x),extend=TRUE)

} else {

x <- us$m[,c(var)]

}

x_q <- diff(aggregate(x,nfrequency=4,FUN=mean))

y <- diff(y)

x <- diff(x)
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y <- window(y,start=est_st)

x <- window(x,start=est_st)

x_q <- window(x_q,start=est_st)

fcast <- NULL

error <- NULL

i <- 0

#Do RMSE for 1 period ahead over the RMSE period

for (yr in rmse_st[1]:rmse_end[1]){

if (yr==rmse_end[1]){ #if end quarter is different from 4

last_qtr = rmse_end[2]

} else {

last_qtr = 4

}

for (qtr in 1:last_qtr){

i <- i+1

date_q = c(yr,qtr-1)

date_m = c(yr,3*(qtr-1))

x_est <-window(x,start=est_st,end=date_m)
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y_est <- window(y,start=est_st,end=date_q)

midas_temp <- midas_r(y_est~mls(y_est,1,1)+

fmls(x_est,2,3,nealmon),

start=list(x_est=rep(0,3)))

x_cur <- window(x,start=date_m+c(0,1),end=date_m+c(0,3))

f <- forecast(midas_temp,list(x_est=x_cur,method="dynamic"))

fcast$midas[i] <- f$mean

x_q_est <- window(x_q,start=est_st,end=date_q)

midas_temp <- lm(y_est~x_q_est)

x_q_cur <- window(x_q,start=c(yr,qtr),end=c(yr,qtr))

fcast$ols[i] <- predict(midas_temp,

list(x_q_est=x_q_cur,y_est=last(y_est)))

}

}

fcast <- as.data.frame(fcast)

fcast <- ts(fcast,start=rmse_st,frequency = 4)

fcast <- ts.intersect(y,fcast) #merge actual (y) with forecasted values

# calculate RMSE

error$midas <- rmse(fcast[,"fcast.midas"], y)
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error$ols <- rmse(fcast[,"fcast.ols"],y)

error

error$midas/error$ols

#plot predicted against forecasted values

png(filename=paste("./Work/nowcast_pred_",var,".png",sep=""))

plot(fcast,plot.type = "s",col=rainbow(n=3,alpha=1),

ylab="GDP growth, %", xlab="")

legend("bottomleft",legend = c("Actual","MIDAS","OLS")

, cex=0.8, fill=rainbow(n=3))

title("Nowcast comparison")

abline(h=0)

dev.off()

m <- midas_r(y~mls(y,1,1)+fmls(x,2,3,nealmon),

start=list(x=rep(0,3)))

ols <- lm(y~x_q)

summary(m)

summary(ols)

}
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