Testing equality of variance:

In statistics, when a usual  regression or one-way ANOVA is performed, it is assumed that the group variances are statistically equal. If this assumption is not valid, then the resulting F-test is invalid. 
Bartlett's test (Snedecor and Cochran, 1983) is used to test if k samples have equal variances. Equal variances across samples is called homoscedasticity or homogeneity of variances. Some statistical tests, for example the analysis of variance, assume that variances are equal across groups or samples. The Bartlett test can be used to verify that assumption.

Bartlett's test is sensitive to departures from normality. That is, if your samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality. The Levene test and Brown-Forsythe test are alternatives to the Bartlett test that are less sensitive to departures from normality.

Bartlett's test is used to test the null hypothesis, H0 that all k population variances are equal against the alternative that at least two are different.

If there are k samples with size ni and sample variance 
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is the pooled estimate for the variance.

The test statistic has approximately a [image: image4.png]


distribution. Thus the null hypothesis is rejected if [image: image5.png]
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is the upper tail critical value for the [image: image7.png]


distribution).

Bartlett's test is a modification of the corresponding likelihood ratio test designed to make the approximation to the [image: image8.png]


distribution better (M. S. Bartlett 1937).

References
· Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society Series A 160, 268–282.

· Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press.

The Brown-Forsythe test is a statistical test for the equality of group variances based on performing an ANOVA on a transformation of the response variable.

	



Transformation
The transformed response variable is constructed to measure the spread in each group. Let
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is the median of group j. In order to correct for the artificial zeros that come about with odd numbers of observations in a group, any zij that equals zero is replaced by the next smallest zij in group j. The Brown-Forsythe test statistic is the model F statistic from a one way ANOVA on zij:
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where p is the number of groups, nj is the number of observations in group j, and N is the total number of observations.

If the variances are indeed heterogeneous, techniques that allow for this (such as the Welch one-way ANOVA) may be used instead of the usual ANOVA.

****************************************

LEVENE TEST 
Name: 
LEVENE TEST 
Type: 
Analysis Command 
Purpose: 
Perform a k-sample Levene test for the homogeneity of variances across samples. 
Description: 
The F test used in analysis of variance problem with k factors can be sensitive to unequal standard deviations in the k factors. Levene's test is a test of the hypothesis that all factor standard deviations (or equivalently variances) are equal against the alternative that the standard deviations are not all equal. 
The assumption of homogeneous variances arises in other contexts in addition to analysis of variance. Levene's test can be applied in these cases as well. 
The Levene test is an alternative to the Bartlett test. Although it is more commonly used, the Bartlett test is known to be sensitive to departures from normality. The Levene test is less sensitive to non-normality than the Bartlett test. 
The Levene test is defined as: 
	H0: 
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	Ha: 
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   for at least one pair (i,j). 

	Test Statistic: 
	Given a variable Y with sample of size N divided into k sub-groups, where Ni is the sample size of the ith sub-group, the Levene test statistic is defined as: 
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where Zij can have one of the following three definitions: 
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is the mean of the ith subgroup. 
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is the median of the ith subgroup. 
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is the 10% trimmed mean of the ith subgroup. 
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are the group means of the Zij and [image: image22.png]


is the overall mean of the Zij. 

The three choices for defining Zij determine the robustness and power of Levene's test. By robustness, we mean the ability of the test to not falsely detect non-homogeneous groups when the underlying data is not normally distributed and the groups are in fact homogeneous. By power, we mean the ability of the test to detect non-homogeneous groups when the groups are in fact non-homogenous. 

The definition based on the median is recommended as the choice that provides good robustness against many types of non-normal data but retains good power. 

	Significance Level: 
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(typically 0.05). 

	Critical Region: 
	The Levene test rejects the hypothesis that the variances are homogeneous if 
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is the upper critical value of the F distribution with k - 1 and N - 1 degrees of freedom at a significance level of [image: image26.png]
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Syntax 1: 
LEVENE TEST <y> <tag> <SUBSET/EXCEPT/FOR qualification>
where <y> is a response variable;
          <tag> is a factor identifier variable;
and where the <SUBSET/EXCEPT/FOR qualification> is optional. 
This syntax computes the median based Levene test. 
Syntax 2: 
MEDIAN LEVENE TEST <y> <tag> <SUBSET/EXCEPT/FOR qualification>
where <y> is a response variable;
          <tag> is a factor identifier variable;
and where the <SUBSET/EXCEPT/FOR qualification> is optional. 
This syntax computes the median based Levene test. 
Syntax 3: 
MEAN LEVENE TEST <y> <tag> <SUBSET/EXCEPT/FOR qualification>
where <y> is a response variable;
          <tag> is a factor identifier variable;
and where the <SUBSET/EXCEPT/FOR qualification> is optional. 
This syntax computes the mean based Levene test. 
Syntax 4: 
TRIMMED MEAN LEVENE TEST <y> <tag> <SUBSET/EXCEPT/FOR qualification>
where <y> is a response variable;
          <tag> is a factor identifier variable;
and where the <SUBSET/EXCEPT/FOR qualification> is optional. 
This syntax computes the trimmed mean based Levene test. It trims the lowest 10% and the highest 10% of the data. 
Examples: 
LEVENE TEST Y1 GROUP 
LEVENE TEST Y1 GROUP SUBSET GROUP > 2 
MEDIAN LEVENE TEST Y1 GROUP 
MEAN LEVENE TEST Y1 GROUP 
TRIMMED MEAN LEVENE TEST Y1 GROUP 
Note: 
The various values printed by the LEVENE TEST command are saved as parameters that can be used later by the analyst. Enter the command STATUS PARAMETERS after the LEVENE TEST command to see a list of the saved parameters. 
Note: 
The HOMOGENEITY PLOT is a graphical technique for testing for unequal variances. 
Default: 
The default is to to compute the Levene test based on group medians. 
Synonyms: 
None 
Related Commands: 
	BARTLETT TEST 
	= Compute Bartlett's test. 

	HOMOGENEITY PLOT 
	= Plot group standard deviations against group means. 

	CONFIDENCE LIMITS 
	= Compute the confidence limits for the mean of a sample. 

	F TEST 
	= Performs a two-sample F test. 

	T TEST 
	= Performs a two-sample t test. 

	CHI-SQUARE TEST 
	= Performs a one sample chi-square test that the standard deviation is equal to a given value. 

	STANDARD DEVIATION 
	= Computes the standard deviation of a variable. 


Reference: 
Levene, H. (1960). "Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling", I. Olkin, et. al., eds. Stanford University Press, Stanford, CA, pp. 278-292. 
Applications: 
Analysis of Variance, Regression 
Implementation Date: 
1998/5 
Program: 
SKIP 25 
READ VANGEL32.DAT Y X BATCH 
. 
LEVENE TEST Y X 
STATUS PARAMETERS 
Dataplot generated the following output: 
       **************************

       **      LEVENE TEST Y X **

       **************************

               LEVENE F-TEST FOR SHIFT IN VARIATION

                      (ASSUMPTION: NORMALITY)

 1. STATISTICS

       NUMBER OF OBSERVATIONS    =       45

       NUMBER OF GROUPS          =        3

       LEVENE F TEST STATISTIC   =    10.88619

    FOR LEVENE TEST STATISTIC

       0          % POINT    =          0.

       50         % POINT    =   0.7047137

       75         % POINT    =    1.433075

       90         % POINT    =    2.433564

       95         % POINT    =    3.219942

       99         % POINT    =    5.149141

       99.9       % POINT    =    8.179383

          99.98448       % Point:     10.88619

 3. CONCLUSION (AT THE 5% LEVEL):

       THERE IS A SHIFT IN VARIATION.

       THUS: NOT HOMOGENOUS WITH RESPECT TO VARIATION.

 PARAMETER INFINITY  HAS THE VALUE:     0.3402823E+39

 PARAMETER PI        HAS THE VALUE:     0.3141593E+01

 PARAMETER STATVAL   HAS THE VALUE:     0.1088619E+02

 PARAMETER STATCDF   HAS THE VALUE:     0.9998448E+00

 PARAMETER CUTOFF0   HAS THE VALUE:     0.0000000E+00

 PARAMETER CUTOFF50  HAS THE VALUE:     0.7047137E+00

 PARAMETER CUTOFF75  HAS THE VALUE:     0.1433075E+01

 PARAMETER CUTOFF90  HAS THE VALUE:     0.2433564E+01

 PARAMETER CUTOFF95  HAS THE VALUE:     0.3219942E+01

 PARAMETER CUTOFF99  HAS THE VALUE:     0.0000000E+00

 PARAMETER CUTOF999  HAS THE VALUE:     0.0000000E+00

*********************************************

Comparison of  Brown-Forsythe test with Levene's test
Levene's test uses the mean instead of the median. Although the optimal choice depends on the underlying distribution, the definition based on the median is recommended as the choice that provides good robustness against many types of non-normal data while retaining good statistical power. If one has knowledge of the underlying distribution of the data, this may indicate using one of the other choices. Brown and Forsythe performed Monte Carlo studies that indicated that using the trimmed mean performed best when the underlying data followed a Cauchy distribution (a heavy-tailed distribution) and the median performed best when the underlying data followed a Chi-square distribution with four degrees of freedom (a heavily skewed distribution). Using the mean provided the best power for symmetric, moderate-tailed, distributions.

References
· Brown, Morton B. and Forsythe, Alan B. (1974), Robust Tests for Equality of Variances, Journal of the American Statistical Association, 69, 364-367.

***************************************************
We can also use the Breusch-Pagan Test to formally test the constancy of error variance. 

The Breusch-Pagan test is a large-sample test for constancy of error variance. It assumes that error terms are independent and normally distributed and that the variance of the error term (i, denoted by
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Note that above equation implies that 
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 either increases or decreases with the level of the q predictor variables, depending on the sign of (s. Constancy of error variance corresponds to
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. Therefore a test of H0: 
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 can be carried out by 

(1) fitting the following regression model :
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where (i is the  error term for this regression model. The regression sum of squares can then be obtained and denoted by SSR*. 

(2) obtain SSE, the error sum of squares from the following regression model:
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(3) calculate the test statistic 
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 , which follows approximately the chi-square distribution with q degree of freedom when 
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 holds and n is reasonably large

(4)
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SAS CODE: : In a small-scale experimental study of the relation between degree of brand liking (Y) and moisture content (X1) and sweetness (X2) of the product, the data were obtained from the experiment based on a completely randomized design, see CH06PR05.txt from your textbook.. 
data Brandpreference;

 infile 'Z:\ch06pr05.txt';

 input y x1 x2;

proc reg data=Brandpreference;

 model y=x1 x2/r p;

 output out=results r=residual p=yhat;

run;

 data results;

 set results;

 e2 = residual*residual;

proc reg data=results;

   model e2 = x1 x2;

run;

quit;

SAS OUTPUT

                              Analysis of Variance

                                     Sum of           Mean

 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2     1872.70000      936.35000     129.08    <.0001

 Error                    13       94.30000        7.25385
 Corrected Total          15     1967.00000

              Root MSE              2.69330    R-Square     0.9521

              Dependent Mean       81.75000    Adj R-Sq     0.9447

              Coeff Var             3.29455

                              Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1       37.65000        2.99610      12.57      <.0001

      x1            1        4.42500        0.30112      14.70      <.0001

      x2            1        4.37500        0.67332       6.50      <.0001

The REG Procedure

                                 Model: MODEL1

                            Dependent Variable: e2

                    Number of Observations Read          16

                    Number of Observations Used          16

                              Analysis of Variance

                                     Sum of           Mean

 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2       72.40700       36.20350       0.95    0.4113

 Error                    13      494.34723       38.02671

 Corrected Total          15      566.75423

              Root MSE              6.16658    R-Square     0.1278

              Dependent Mean        5.89375    Adj R-Sq    -0.0064

              Coeff Var           104.62914

                              Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1        1.15875        6.85989       0.17      0.8685

      x1            1        0.91750        0.68944       1.33      0.2061

      x2            1       -0.56250        1.54165      -0.36      0.7211

For this example, please conduct the Breusch-Pagan test for constancy of the error variance, assuming 
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; use (=0.01. State the alternatives, decision rule and conclusion.
Lack of Fit Test

To ascertain whether a linear regression function is a good fit for the data, we can carry out a formal test called lack of fit F-test. The lack of fit test assumes that the observations Y for given predictor variables X1, X2, …, Xp-1 are (1) independent and (2) normally distributed, and that (3) the distribution of Y have the same variance (2. The lack of fit test requires repeat observations at one or more Xs levels. Lack of fit F-test is a general linear test approach which compares the full model and reduced model:

Full model: 
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The full model states that each response Y is made up of two components: the mean response when X1=X1j,  X2=X2j,… , Xp-1=Xp-1j  and a random error term. 

Reduced Model: 
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Note that here i refers to ith replicate observations, j refers to jth level of predictor variable X1,  X2, … Xp-1.

The difference between the full model and the reduced model is that in the full model there are no restrictions on the mean (I, whereas in the reduced model the mean responses are linearly related to the Xs. A test statistic was then developed to compare the error sum of squares from the full model and the reduced model as follows:
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SAS CODE:
data Brandpreference;

infile 'c:\stat231B06\ch06pr05.txt';

input y x1 x2;

if x1=4 and x2=2 then j=1;  /* create a new variable J*/

if x1=4 and x2=4 then j=2;

if x1=6 and x2=2 then j=3;

if x1=6 and x2=4 then j=4;

if x1=8 and x2=2 then j=5;

if x1=8 and x2=4 then j=6;

if x1=10 and x2=2 then j=7;

if x1=10 and x2=4 then j=8;

run;

 proc glm data=Brandpreference;

 class j;

 model y= x1 x2 j;

 run;

SAS OUTPUT:

                                       The GLM Procedure

                                    Class Level Information

                            Class         Levels    Values

                            j                  8    1 2 3 4 5 6 7 8

                            Number of Observations Read          16

                            Number of Observations Used          16

                                       The GLM Procedure

Dependent Variable: y

                                              Sum of

      Source                      DF         Squares     Mean Square    F Value    Pr > F

      Model                        7     1910.000000      272.857143      38.30    <.0001

      Error                        8       57.000000        7.125000

      Corrected Total             15     1967.000000

                       R-Square     Coeff Var      Root MSE        y Mean

                       0.971022      3.265162      2.669270      81.75000

      Source                      DF       Type I SS     Mean Square    F Value    Pr > F

      x1                           1     1566.450000     1566.450000     219.85    <.0001

      x2                           1      306.250000      306.250000      42.98    0.0002

      j                            5       37.300000        7.460000       1.05    0.4530

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F

      x1                           0      0.00000000       .                .       .

      x2                           0      0.00000000       .                .       .

      j                            5     37.30000000      7.46000000       1.05    0.4530

To compute the Lack of fit F* in SAS, we switch to the proc glm procedure. We begin by fitting the full model to the data. This requires creating a new variable, J. Using the class j statement in proc glm , we specify that J is a classification variable. Thus, J identifies 8 discrete classifications based on the values of Xs. The SAS output shows that SSE(F)=57, SSE(R)-SSE(F)=37.3. 
For this example, conduct a formal test for lack of fit of the first-order regression function; use (=0.01. State the alternatives, decision rule and conclusion.
Joint Inference of several regression coefficients.

The Bonferroni joint confidence intervals can be used to estimate several regression coefficients simultaneously. If g parameters are to be estimated jointly (where g(p)), the confidence limits with family confidence coefficient 1-( are
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proc reg data=Brandference;

model y=x1 x2;

run;
We obtain the following estimates for regression coefficients and their corresponding standard deviation.

                       Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1       37.65000        2.99610      12.57      <.0001

      x1            1        4.42500        0.30112      14.70      <.0001

      x2            1        4.37500        0.67332       6.50      <.0001

Then use the code below, we can estimate (1 and (2 jointly by the Bonferroni procedure, using a 99 percent family confidence coefficient. 

SAS CODE:

data intervals;

tvalue = tinv(.9975,13);

b1lo=4.425-(tvalue*0.30112); /*lower bound for b1*/

b1hi=4.425+(tvalue*0.30112); /*upper bound for b1*/

b2lo=4.375-(tvalue*0.67332); /*lower bound for b2*/

b2hi=4.375+(tvalue*0.67332); /*upper bound for b2*/

proc print;

var b1lo b1hi b2lo b2hi;

run;
SAS OUTPUT:
                Obs      b1lo       b1hi       b2lo       b2hi

                 1     3.40948    5.44052    2.10425    6.64575

For this example, estimate (1 and (2 jointly by the Bonferroni procedure, using a 95 percent family confidence coefficient. Interpret your results.

Estimation of Mean Response and Prediction of New Observation

A common objective in regression analysis is to estimate the mean for one or more probability distribution of Y. Let 
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 denote the level of Xs for which we wish to estimate the mean response 
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 maybe a value which occurred in the sample, or it may be some other value of the predictor variables within the scope of the model. 
[image: image48.wmf]h

Y

ˆ

 is the point estimator of 
[image: image49.wmf]{

}

h

Y

E

:
· In terms of matrices:


[image: image50.wmf]{

}

{

}

{

}

{

}

(

)

{

}

{

}

(

)

(

)

{

}

h

h

h

1

h

h

2

h

h

h

1

h

2

h

2

h

h

h

h

h

h

h

h

1

p

,

h

1

h

1

p

h

Y

ˆ

s

p

n

;

2

1

t

Y

ˆ

X

X

X

X

MSE

X

b

s

X

Y

ˆ

s

X

X

X

X

X

b

X

Y

ˆ

response

mean 

 

 the

of

estimator 

 

unbiased

 

X

Y

ˆ

E

b

X

Y

ˆ

response)

(mean 

 

X

Y

E

X

X

1

X

-

a

-

±

¢

¢

=

¢

=

¢

¢

s

=

s

¢

=

s

b

¢

=

¢

=

b

¢

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

-

-

-

´

2

2

 

M


Prediction of New Observation
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SAS CODE for obtaining an interval estimate of 
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 Xh1=5 and Xh2=4, using a 99 percent confidence coefficient. 

data Brandpreference;

 infile 'Z:\ch06pr05.txt';

 input y x1 x2;

 tvalue = tinv(.995,13);/*find t-value for a t(13) with alpha=0.01*/

 x0 = 1;

 proc iml;

 use Brandpreference;

 read all var {'y'} into y;

 read all var {'x1'} into a;

 read all var {'x2'} into b;

 read all var {'x0'} into con;

 read all var {'tvalue'} into tvalue;

 x=(con||a||b);   /*create X matrix*/
 print x;

 xtx=t(x)*x;     /*create X’X matrix*/
 print xtx;

 xty=t(x)*y;     /*create X’Y matrix*/
 print xty;

 b=inv(t(x)*x)*t(x)*y;/*create (X’X)^(-1)X’Y matrix*/
 print b;

 xtxinv=inv(t(x)*x);  /*create (X’X)(-1) matrix*/
 print xtxinv;

 xh={1,5,4};

 sxh=sqrt(7.25385*((t(xh))*(xtxinv)*xh)); /*7.25385 is MSE from*/                     

                                            /*regression analysis*/
print sxh;

yhath = t(xh)*b; 

print yhath;

yhathlo=yhath-(tvalue*sxh);

yhathhi=yhath+(tvalue*sxh);

low = yhathlo[1,1];

high=yhathhi[1,1];

print low high;

run;

quit;

SAS OUTPUT:

  LOW      HIGH

                                      73.881108 80.668892

For this example, obtain an interval estimate of 
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 Xh1=5 and Xh2=4, using a 95 percent confidence coefficient. Interpret your interval estimate

SAS CODE for obtain a prediction interval for a new observation Yh(new) when Xh1=5 and Xh2=4. Use a 99 percent confidence coefficient. 
data Brandpreference;

 infile 'Z:\ch06pr05.txt';

 input y x1 x2;

b = tinv(.995,13);

x0 = 1;

proc iml;

use dwaine;

read all var {'y'} into y;

read all var {'x1'} into a;

read all var {'x2'} into b;

read all var {'x0'} into con;

read all var {'b'} into bon;

x=(con||a||b);

xtx=t(x)*x;

xty=t(x)*y;

b=inv(t(x)*x)*t(x)*y;

xtxinv=inv(t(x)*x);

xh={1,5,4};

spre=sqrt(7.25385+(7.25385*((t(xh))*(xtxinv)*xh)));

yhath = t(xh)*b;

yhathlo=yhath-(bon*spre);

yhathhi=yhath+(bon*spre);

low = yhathlo[1,1];

high=yhathhi[1,1];

print low high;

run;

quit;

SAS OUTPUT
                                            LOW      HIGH

                                      68.480767 86.069233

For this example, obtain an prediction interval of for a new observation Yh(new)  when Xh1=5 and Xh2=4, using a 95 percent confidence coefficient. 
Chi-Square Distribution Function (used for calculating pvalue based on Chi-square distribution)



probchi(x,df,nc) returns the value of the distribution function of the chi-square distribution with df degrees of freedom and optional non-centrality parameter nc. If not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=probchi(3,17);

z=probchi(3,17,5);

Chi-Square Quantiles used for calculating Chi-square critical value based on Chi-square distribution)



cinv(p,df,nc) returns the pth quantile, 0<p<1, of the chi-square distribution with degrees of freedom df. If the optional non-centrality parameter nc is not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=cinv(0.95,5);

z=cinv(0.95,5,3);

F Distribution Function (used for calculating pvalue based on F distribution)



probf(x,ndf,ddf,nc) returns the value of the distribution function of the F distribution with ndf numerator degrees of freedom, ddf denominator degrees of freedom, and optional non-centrality parameter nc. If not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=probf(3.57,4,12);

z=probf(3.57,4,12,2);

F Distribution Quantiles (used for calculating F critical value based on F distribution)


finv(p,ndf,ddf,nc) returns the pth quantile, 0<p<1, of the F distribution with ndf numerator degrees of freedom, ddf denominator degrees of freedom, and optional nc as the non-centrality parameter. If not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=finv(.95,3,12);

z=finv(.95,3,12,4);

T Distribution Function (used for calculating pvalue based on T distribution)



probt(x,df,nc) returns the value of the distribution function of the t distribution with df degrees of freedom and optional non-centrality parameter nc. If not specified, nc=0. nc is the value of the mean. Examples: 

y=probt(1.96,10);

z=probt(1.96,10,3);

T Distribution Quantiles (used for calculating T critical value based on T distribution)

tinv(p,df,nc) returns the pth quantile, 0<p<1, of the t distribution with df degrees of freedom and optional non-centrality nc. If not specified nc=0. nc is the value of the mean. Examples: 

y=tinv(.95,10);

z=tinv(.95,10,5);
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