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Abstract

Let A be a Banach algebra, and considerA∗∗ equipped with the first Arens product. We
establish a general criterion which ensures thatA is left strongly Arens irregular, i.e., the
first topological centre ofA∗∗ is reduced toA itself. Using this criterion, we prove that for
a very large class of locally compact groups, Ghahramani–Lau’s conjecture (cf.[Lau 94] and
[Gha-Lau 95]) stating the left strong Arens irregularity of the measure algebra M(G), holds
true. (Our methods obviously yield as well the right strong Arens irregularity in the situation
considered.)

Furthermore, the same condition used above implies that every linear leftA∗∗-module
homomorphism onA∗ is automatically bounded andw∗-continuous. We finally show that our
criterion also yields a partial answer to a question raised by Lau-Ülger (Trans. Amer. Math.
Soc. 348 (3) (1996) 1191) on the topological centre of the algebra(A∗ �A)∗, for A having
a right approximate identity bounded by 1.
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1. Introduction

In 1951, Arens showed that there are two canonical ways of extending the product
on a Banach algebraA to the level of its bidualA∗∗ (see[Are 51]); these are called
theArens products. Comparing the two products, there are two extreme cases which are
naturally of major interest. In the extreme case where the two products coincide, the
algebraA is calledArens regular. Examples are allC∗-algebras, and also the algebra
(�1, ·) with pointwise multiplication. On the other hand, for an infinite locally compact
group G, the algebraL1(G) with convolution is not Arens regular. Hence, the question
arises how one can measure the Arens (ir)regularity of a Banach algebraA.

A natural procedure is to consider the so-calledtopological centres:

Z1
t (A∗∗)= {F ∈ A∗∗ | F �G = F.G ∀G ∈ A∗∗}

= {F ∈ A∗∗ | A∗∗ 
 G �→ F �G w∗ − w∗-continuous}

and

Z2
t (A∗∗)= {F ∈ A∗∗ | G� F = G.F ∀G ∈ A∗∗}

= {F ∈ A∗∗ | A∗∗ 
 G �→ G.F w∗ − w∗-continuous}.

Here we denote by “�” the first, by “.” the second Arens product. In the following, we
shall restrict ourselves to the first Arens product and the first topological centre—our
methods and results obviously admit analogues for the second topological centre. (We
use the notation� for the first Arens product and the canonical module operations of
A∗∗ and A on A∗. For a detailed account of Arens products and topological centres,
we refer the reader to[Dal 00, Lau-Ülg 96, Pal 94].) We haveZ1

t (A∗∗) = A∗∗ if and
only if A is Arens regular. The other extreme situation isZ1

t (A∗∗) = A, in which case
A is called left strongly Arens irregular; cf. [Dal-Lau 04].

It is well-known that for all locally compact groups,L1(G) is left (and right) strongly
Arens irregular—a result which has a history of about 15 years and was obtained in
full generality by Lau and Losert (cf.[Lau-Los 88]). In [Lau,Gha-Lau 95], Ghahramani
and Lau conjectured that the measure algebra M(G) also shares this property; this is
Problem 11 in[Lau 94, p. 89], and Problem 1 in[Gha-Lau 95, p. 184]. Our aim is to
prove that for a very large class of locally compact groups, this conjecture holds.

At this point we would like to mention the preprint[Ess 04]by Esslamzadeh which
presents an attempt to prove the Ghahramani–Lau conjecture for every locally compact
group, by an approach completely different from ours. The proof, however, contains a
gap, and, to our knowledge, it has until now been impossible to fix it.

We shall obtain Ghahramani–Lau’s conjecture as a corollary of a general Banach
algebraic principle which is a powerful criterion for strong Arens irregularity. At the
same time, we shall prove that this principle also implies the automatic boundedness
and w∗-continuity of all linear A∗∗-module maps onA∗; it establishes the abstract
framework for the methods first developed in[Neu 04a]. The crucial idea is to combine
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the concept of the Mazur property of higher cardinal level forA, as introduced in
[Neu 04b], with a certain factorization property for bounded families inA∗ of the
same cardinality. Finally, we shall derive a “dual” variant of our criterion which in
turn completely describes the structure of the topological centre for algebras of the
form (A∗ � A)∗, whereA has a right approximate identity bounded by 1. This result
provides a partial answer to a question raised by Lau-Ülger[laul, Section 6, Question
(f)] . We recall that in the above situation,(A∗ �A)∗ is a Banach algebra as a quotient
of A∗∗ (endowed with the first Arens product), and naturally its topological centre is
defined to be

Zt((A∗ � A)∗) = {m ∈ (A∗ � A)∗ | (A∗ � A)∗ 
 n �→ mn w∗ − w∗-continuous}.
For a Banach algebraA, we denote byLA∗∗(A∗) the space of linear leftA∗∗-module

maps onA∗; the subspaces of bounded respectivelyw∗-w∗-continuous module maps
are denoted byBA∗∗(A∗) and B�

A∗∗(A∗), respectively.
For any locally compact groupG, we denote by�(G) the compact covering number,

i.e., the least cardinality of a covering ofG by compact subsets. We writeb(G) for
the local weightof G, i.e., the least cardinality of an open basis at the neutral element
of G. It is a classical result that these two cardinals are “dual” to each other in the
following sense: ifG is abelian with dual group̂G, then the equality�(G) = b(Ĝ)
holds.

We recall that a cardinal number� is called (real-valued-)measurableif for any set
� with cardinality |�| = �, there exists a diffused probability measure on the power
setP(�). One class of groups we shall consider in the sequel, are groups with non-
measurable cardinality, which is a natural assumption. We list below a few properties
of measurable cardinals several of which show their somewhat pathological nature:

• It cannot be proven in ZFC that measurable cardinals exists at all.
• It is consistent with ZFC to assume that measurable cardinals do not exist.
• The cardinalsℵ0 (trivially) and ℵ1 are non-measurable.
• Martin’s Axiom implies thatc—and hence every cardinal belowc—is non-measurable.

(So, in particular, assuming the Continuum Hypothesis implies thatc is non-
measurable.)

• In ZFC, the statements “a measurable cardinal exists” and “Lebesgue measure can
be extended to a measure defined on the power set ofR” are equiconsistent.

The above results can be found in[Jec 97, Part III, Chapter 5, §27], [Gar-Pfe 84, §4,
p. 972–973]. For more information on measurable cardinals, we refer the reader to[Sol,
71, Fre 93]; especially the latter text shows “how enormously complicated real-valued-
measurable cardinals have to be” (ibid., p. 159)—if one assumes their existence.

2. The topological centre ofA∗∗ and automatic continuity of module
homomorphisms onA∗

We introduce the following crucial concept which is a general property for Banach
algebras.
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Definition 2.1. Let A be a Banach algebra, and let� be a cardinal number. We say
that A∗ has

(i) the left A∗∗ factorization property of level� [property (F�), for short] if for
any family of functionals(h�)�∈I ⊆ Ball(A∗) with |I | = �, there exist a family
(��)�∈I ⊆ Ball(A∗∗) and one single functionalh ∈ A∗ such that the factorization
formula

h� = �� � h

holds for all � ∈ I ;
(ii) the left uniform A∗∗ factorization property of level� [property (UF�), for short]

if there is a family (��)�∈I ⊆ Ball(A∗∗) with |I | = �, such that for any family
of functionals(h�)�∈I ⊆ Ball(A∗), there is one single functionalh ∈ A∗ such that
the factorization formula

h� = �� � h

holds for all � ∈ I .

We recall from[Neu 04b] the following:

Definition 2.2. Let X be a Banach space and��ℵ0 a cardinal number.

(i) A functional f ∈ X∗∗ is calledw∗-�-continuous if for all nets(x�)�∈I ⊆ Ball(X∗)
of cardinality ℵ0� |I |�� with x�

w∗−→ 0, we have:〈f, x�〉 −→ 0.
(ii) We say thatX has the Mazur property of level� [property (M�), for short] if

everyw∗-�-continuous functionalf ∈ X∗∗ actually is an element ofX.

As is well-known a Banach spaceX is said to have the (classical) Mazur property
if every w∗ sequentially continuous functionalf ∈ X∗∗ belongs toX.

We now come to our general criterion for both strong Arens irregularity and the
automatic boundedness andw∗-continuity of module homomorphisms. The idea is to
combine the factorization property with the Mazur property of the same cardinal level.

Theorem 2.3. Let A be a Banach algebra satisfying(M�) and whose dualA∗ has
the property(F�), for some��ℵ0. Then the following two statements hold:

(i) The Banach algebraA is left strongly Arens irregular; i.e.,

Z1
t (A∗∗) = A.

(ii) Every linear leftA∗∗-module homomorphism onA∗ is automatically bounded and
w∗-w∗-continuous; i.e.,

LA∗∗(A∗) = B�
A∗∗(A∗).
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Remark 2.4. Obviously, assuming the right version of the factorization property(F�),
one can deduce the right strong Arens irregularity ofA and the continuity of right
A∗∗-module maps onA∗.

Proof of Theorem 2.3. (i) Let m ∈ Z1
t (A∗∗). Consider a net(h�)�∈I ⊆ Ball(A∗),

where|I |��, which convergesw∗ to 0. By property(M�), we only have to show that
〈m,h�〉 converges to 0. It suffices to prove that every convergent subnet of(〈m,h�〉)�
converges to 0. Fix such a convergent subnet(〈m,h��〉)�. By property (F�), for all
� ∈ I , we have the factorizationh� = �� �h, where(��)�∈I ⊆ Ball(A∗∗) andh ∈ A∗.
Since the net(���

)� ⊆ Ball(A∗∗) is bounded, there exists aw∗-convergent subnet
(����

)�; let E•w∗ − lim� ����
∈ Ball(A∗∗). We obtainE � h = 0 since for alla ∈ A:

〈E � h, a〉 = 〈E, h� a〉 = lim
�

〈����
, h� a〉 = lim

�
〈����

� h, a〉 = lim
�

〈h���
, a〉 = 0.

Hence, we finally deduce, using thatm ∈ Z1
t (A∗∗):

lim
�

〈m,h��〉 = lim
�

〈m,h���
〉 = lim

�
〈m,����

� h〉 = lim
�

〈m� ����
, h〉 = 〈m� E, h〉

= 〈m,E � h〉 = 0,

which yields the desired convergence.
(ii) Our procedure is similar to the proofs given for Theorems 3.1 and 3.2 in

[Neu 04a]. We shall outline the argument for the convenience of the reader. Let� ∈
LA∗∗(A∗). We shall first prove the statement concerning the automatic boundedness. To
this end, assume that� is unbounded. Thus, there is a sequence(hn)n∈N ⊆ Ball(A∗)
such that

‖�(hn)‖�n

holds for all n ∈ N. Using the factorization

hn = �n � h (n ∈ N),

where�n ∈ Ball(A∗∗) and h ∈ A∗, we obtain that for alln ∈ N:

n�‖�(hn)‖ = ‖�(�n � h)‖ = ‖�n � �(h)‖�‖�(h)‖,

a contradiction.
Let us now prove that a mapping� ∈ BA∗∗(A∗) is automaticallyw∗-w∗-continuous.

Due to property(M�), we only need to show that for any net(h�)�∈I ⊆ Ball(A∗),
ℵ0� |I |��, such thath� → 0 (w∗), we have�(h�) → 0 (w∗). Fix a ∈ A. Obviously,
it is enough to show that any convergent subnet〈�(h��), a〉 converges to 0. Property
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(F�) entails the factorizationh� = �� � h with (��)�∈I ⊆ Ball(A∗∗) and h ∈ A∗. Let
� := w∗ − lim� ����

∈ Ball(A∗∗) be aw∗-cluster point. We have� � h = 0, since for

all b ∈ A:

〈� � h, b〉 = lim
�

〈����
� h, b〉 = lim

�
〈h���

, b〉 = 0.

Hence we obtain

lim
�

〈�(h��), a〉 = lim
�

〈�(���
� h), a〉 = lim

�
〈����

� �(h), a〉 = 〈� � �(h), a〉

= 〈�(� � h), a〉 = 0,

which finishes the proof. �

Remark 2.5. Consider the special caseA = L1(G). We have shown in[Neu 04b]
that L1(G) has the property(M�(G)·ℵ0), and in [Neu 04a] that, for all locally compact
non-compact groups,L∞(G) has the property(UF�(G)·ℵ0). Hence, it follows from part
(i) of the above theorem thatL1(G) is left strongly Arens irregular for all non-compact
groupsG (in the compact case, a very quick proof of this fact has been given by Lau
and Losert[Lau-Los 88]); this is the main result of[Lau-Los 88]. See[Neu 04].

Moreover, part (ii) of Theorem2.3, applied to the algebraA = L1(G), gives an
affirmative answer to a conjecture formulated by Hofmeier and Wittstock[Hof-Wit 97]
concerning the automatic boundedness of leftL∞(G)∗-module maps onL∞(G) and
even derives theirw∗-continuity (cf. [Gha-McC 92] for the latter). See[Neu 04a].

The above result establishes a common abstract Banach algebraic setting for the
strong Arens irregularity of a Banach algebraA and the automaticw∗-continuity of
A∗∗-module maps onA∗. Let us briefly note that the first property always implies the
second, without any assumption onA. Indeed, the following gives an alternative proof
of part of the assertion (ii) in Theorem2.3 above, by using (i).

Proposition 2.6. Let A be a Banach algebra. IfA is left strongly Arens irregular, then
every bounded leftA∗∗-module map onA∗ is automaticallyw∗-continuous, and hence
the adjoint of a left multiplier ofA (i.e., a right A-module map onA). In other words:
If Z1

t (A∗∗) = A, then BA∗∗(A∗) = B�
A∗∗(A∗).

Proof. The argument for showing the automaticw∗-continuity is implicitly contained
in the proof of[Gha-McC 92, Theorem 1.8], where the caseA = L1(G) is considered;
we shall give a variant of the short proof here for the convenience of the reader.
Let � ∈ BA∗∗(A∗). We have to show that�∗(A) ⊆ A, which by our assumption is
equivalent to�∗(A) ⊆ Z1

t (A∗∗). Fix a ∈ A. Then, indeed,�∗(a) ∈ Z1
t (A∗∗) for if

(n�) ⊆ A∗∗ is a bounded net convergingw∗ to 0, then we have, for allh ∈ A∗:

〈�∗(a)� n�, h〉 = 〈a,�(n� � h)〉 = 〈a, n� � �(h)〉 = 〈n�,�(h)� a〉 −→ 0.
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The fact that� is a left multiplier ofA is seen by a quick calculation (cf. the proof
of [Neu 04a, Corollary 3.4]). �

3. Application to the conjecture by Ghahramani–Lau

In the following, we shall establish the left uniform M(G)∗∗ factorization property
of level �(G) for M(G)∗, where G is any locally compact non-compact group. Our
procedure is a more complicated version of the technique applied in[Neu 04a] to
prove a corresponding factorization result forL∞(G). There, we used translation of
functions by group elements in order to “move” projections inL∞(G). In the case
of M(G)∗ whose elements are of course not functions in general, our substitute for
translation is the canonical module action of point masses of group elements (viewed
as belonging to M(G)∗∗) on M(G)∗.

We begin by collecting a few facts that we will need later, concerning the product
in the von Neumann algebra M(G)∗ = C0(G)∗∗ as well as the module operation just
mentioned. We omit the proofs, the arguments being standard. We denote by	 the
canonical embedding of M(G) in its second dual. Ifx ∈ G, we write rx for the right
translation byx, i.e., (rxf )(y) = f (yx) for any functionf on G and y ∈ G.

Lemma 3.1. Let G be any locally compact group. IfK ⊆ G is a compact subset,
we regard the characteristic function
K as an element ofM(G)∗, via integration:
〈
K,�〉 = �(K) for all � ∈ M(G). Then the following hold:

(i) Let K andK ′ be compact subsets ofG. Then we have
K
K ′ = 
K∩K ′ in M(G)∗.
(ii) If K ⊆ G is compact andx ∈ G, we have: 	(�x)� 
K = rx
K = 
Kx−1.

(iii) Let h, f ∈ M(G)∗ and x ∈ G. Then 	(�x)� (hf ) = (	(�x)� h)(	(�x)� f ).

We are now prepared to prove our factorization result.

Theorem 3.2. Let G be a locally compact non-compact group with compact covering
number�(G). ThenM(G)∗ has the property(UF�(G)); here, the factorizing functionals

�j even belong to	(�G)
w∗

⊆ Ball(M(G)∗∗).

Remark 3.3. A straightforward modification of the proof presented below shows that
M(G)∗ also enjoys the right (instead of left) version of the factorization property
(UF�(G)).

Proof of Theorem 3.2.We can coverG by �(G) many open sets with compact closure,
and we may assume the covering being closed under finite unions. We shall denote
by (K�)�∈I this family of compacta. Set̃I := I × I . For �̃ = (�, i) ∈ Ĩ , define
K�̃ = K(�,i) := K�. Then (K�̃)̃�∈Ĩ is a covering ofG with the same properties as the
original one. By Lemma 3 in[Lau-Los 88], there exists a family(ỹ�)̃�∈Ĩ ⊆ G such
that

K�̃ỹ� ∩K�̃y�̃ = � ∀ �̃, �̃ ∈ Ĩ , �̃ �= �̃. (1)
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Define the following natural partial orderings oñI andI by setting, for(�, i), (�, j) ∈ Ĩ :

(�, i) � (�, j) :⇐⇒ K(�,i) ⊆ K(�,j) ⇐⇒ K� ⊆ K� ⇐⇒: � �′ �. (2)

Let F be an ultrafilter onI which dominates the order filter. Define, forj ∈ I ,

�j := w∗ − lim
�→F

	(�y(�,j) ) ∈ 	(�G)
w∗

⊆ Ball
(
M(G)∗∗) .

Consider(�, i) ∈ Ĩ . By Lemma3.1(ii), (iii) we have:

	(�
y−1
(�,i)
)� (
K(�,i)hi)= (	(�

y−1
(�,i)
)� 
K(�,i) )(	(�y−1

(�,i)
)� hi)

= 
K(�,i)y(�,i) (	(�y−1
(�,i)
)� hi).

Thanks to (1), we see by Lemma3.1(i) that the projections
K(�,i)y(�,i) are pairwise
orthogonal. Hence, noting that M(G)∗ is a commutative von Neumann algebra and that
the family (hi)i∈I is bounded, we obtain

h :=
∑
�∈I

∑
i∈I

	(�
y−1
(�,i)
)�

(

K(�,i)hi

)
∈ M(G)∗ (w∗-limits).

By (1), using Lemma3.1 in a crucial fashion, we obtain for all(�, i), (�, j), (�, k) ∈ Ĩ
with (�, k) � (�, j):


K(�,k)

[
	(�y(�,j) )� 	(�

y−1
(�,i)
)�

(

K(�,i)hi

)]
= 
K(�,k)
K(�,j)

[
	(�y(�,j) )� 	(�

y−1
(�,i)
)�

(

K(�,i)hi

)]

= 
K(�,k)

[
	(�y(�,j) )�

((
	(�

y−1
(�,j)

)� 
K(�,j)

)
	(�

y−1
(�,i)
)�

(

K(�,i)hi

))]
= �(�,i),(�,j)
K(�,k)hj .

By (2), we finally get for allj ∈ I and (�, k) ∈ Ĩ :


K(�,k)
(
�j � h

) =w∗ − lim
�→F

∑
�∈I

∑
i∈I


K(�,k)	(�y(�,j) )� 	(�
y−1
(�,i)
)�

(

K(�,i)hi

)
︸ ︷︷ ︸

=�(�,i),(�,j)
K(�,k) hj

= 
K(�,k)hj .

Taking w∗-limits yields the factorization formula that we have claimed.�
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In order to apply Theorem2.3 to the algebraA = M(G), we need to consider the
Mazur property of a certain level, as established in[Hu-Neu 04, Corollary 5.6]. We
shall recall this result here, with a very brief indication of the procedure followed in
its proof.

Proposition 3.4. Let G be a locally compact group.

(i) If the cardinality |G| is non-measurable, then M(G) has the classical Mazur
property.

(ii) The spaceM(G) always has the Mazur property of level|G| · ℵ0.

Proof. (i) In [Neu 04b, Theorem 3.16], it is shown that the predualM∗ of a von
Neumann algebraM (in our case M(G)∗) has the Mazur property if and only if the
decomposability number dec(M) (i.e., the largest cardinality of a family of pairwise
orthogonal non-zero projections inM) is non-measurable. The assertion then follows
from the equality dec(M(G)∗) = |G| which has been established in[Hu-Neu 04, The-
orem 5.5(ii)].

(ii) As shown in [Hu-Neu 04, Theorem 2.2], the predualM∗ of a von Neumann
algebraM always has the Mazur property of level dec(M) · ℵ0, whence M(G) has
the Mazur property of level|G| · ℵ0, due to the equality given at the end of the above
proof of part (i). �

Our factorization (for non-compactG) is at level �(G)� |G|. But it is well-known
that for every infinite locally compact groupG, we have precisely|G| = �(G) · 2b(G)
(cf. [Com 84, Theorem 3.12(iii)]). Therefore, wheneverG is an infinite locally compact
group with �(G)�2b(G), we have�(G) = |G|, and hence, by part (ii) of the above
Proposition, the space M(G) has the Mazur property of level�(G).

So, combining Theorem3.2 with Proposition3.4 entails that for all non-compact
groupsG with non-measurable cardinality, M(G)∗ has (UFℵ0) and M(G) has (Mℵ0).
Furthermore, wheneverG is an infinite locally compact group such that�(G)�2b(G),
then M(G)∗ has (UF�(G)) and M(G) has (M�(G)). We wish to stress here that the
latter class of groups in particular includes every groupG which is the product of an
arbitrary first countable locally compact group with any discrete group of cardinality
at leastc. Also, this class of groups of course does not involve any consideration of
large—such as measurable—cardinals.

Thus, Theorem2.3(i) in particular yields the answer to Ghahramani–Lau’s conjecture
for both the above classes of groups. We state the “left” version below; in view of
Remarks2.4 and 3.3, it is easy to see that the corresponding “right” versions of the
following assertions (i) and (ii) hold as well.

Theorem 3.5. Let G be either

• an infinite locally compact group such that�(G)�2b(G)—for example, G = H × D
whereH is any first countable locally compact group, and D is any discrete group
of cardinality c or higher;
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• or a locally compact non-compact group with non-measurable cardinality.

Then in both cases, the following two statements hold.

(i) The Banach algebraM(G) is left strongly Arens irregular; i.e.,

Z1
t (M(G)∗∗) = M(G).

(ii) Every linear left M(G)∗∗-module homomorphism onM(G)∗ is automatically
bounded andw∗-w∗-continuous; i.e.,

LM(G)∗∗(M(G)∗) = B�
M(G)∗∗(M(G)∗).

Remark 3.6. We would like to point out an intriguing connection of a special case
of the above Theorem to the main result of[Lau-Los 04], recently obtained by Lau
and Losert (see[Lau-Los 04, Theorem 4.2]and also[Lau-Los 93, p. 22, Remark]).
The authors are concerned with the topological centre problem for the Fourier algebra
A(G). Of course, since the latter is commutative, both topological centres ofA(G)∗∗
coincide with the (algebraic) centre ofA(G)∗∗. It was shown in[Lau-Los 93] that the
centre equalsA(G) for a large class of amenable locally compact groups including the
Heisenberg group, the “ax+ b”-group and the motion group (cf. also[Hu-Neu 04, §8]
for further results). However, in general, the determination of the centre is still an open
problem even for compact or discrete groupsG.

In [Lau-Los 04, Theorem 4.2]it is shown that the centre ofA(G)∗∗ is A(G) for
groupsG of the form G = G0 × ∏∞

i=1 Gi , where eachGi , i�0, is a second countable
locally compact group,G0 is amenable, and eachGi , i�1, is compact and non-trivial.
Of course, the group algebraL1(G) and the Fourier algebraA(G), on the one hand, as
well as the measure algebra M(G) and the Fourier–Stieltjes algebraB(G), on the other
hand, form pairs of objects “dual” to each other; this is true for general locally compact
groups in the framework of the duality theory for Kac algebras, and for abelian groups
follows from classical Pontryagin duality. Hence, the role that discrete groups play in
results onL1(G) or M(G) is the same as compact groups play forA(G) or B(G).

From this point of view, the special case of groupsG = H×D given as an example
in our Theorem3.5 above is very similar to the class of groupsG = G0 × ∏∞

i=1 Gi
considered in[Lau-Los 04]: instead of a countably infinite product of compact, non-
trivial groups, we have a discrete group of cardinality (at least)c. Moreover, this
analogy is reflected in a somewhat similar pattern of the approaches to the two results:
in [Lau-Los 04], the second group factor guarantees “enough” characters; in our case
it provides “enough” group elements to translate compacta inG (so that they become
pairwise disjoint), cf. Theorem3.2.

Finally, it may be possible to combine our technique with the method used in
[Lau-Los 04] towards a solution of the (topological) centre problem for the Fourier–
Stieltjes algebraB(G), for large classes of groups. This is of course a very hard
question; it was raised by Lau, see[Lau 94, Problem 10, p. 89].
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We shall finish this section by presenting an important consequence of Theorem3.5,
namely a partial solution to Problem 2 in[Gha-Lau 95, p. 184]. The latter asks whether
an isometric (Banach algebra) isomorphism between M(G1)

∗∗ and M(G2)
∗∗, for two

locally compact groupsG1 and G2, forces the groups to be topologically isomorphic.
Ghahramani and Lau note, after stating Problem 2, that for locally compact abelian
groupsG1 and G2, the answer is of course affirmative provided that for both groups
the topological centre conjecture holds. Thus we have the following.

Corollary 3.7. Let G1 and G2 be two abelian groups both satisfying either one of
the conditions stated at the beginning of Theorem3.5. If M(G1)

∗∗ and M(G2)
∗∗ are

isometrically isomorphic, then G1 and G2 are topologically isomorphic.

4. The topological centre of(A∗ � A)∗

In the sequel, we shall denote byBA,r (A∗) the algebra of bounded linear right
A-module maps onA∗. We begin with a general observation.

Proposition 4.1. Let A be a Banach algebra with a right approximate identity
bounded by1. Then the canonical map


 : (A∗ � A)∗ −→ BA,r (A∗),

where 〈
(m)(h), a〉 = 〈m,h� a〉 for m ∈ (A∗ � A)∗, h ∈ A∗ and a ∈ A, is a linear
isometric isomorphism. Its inverse� is given by

〈�(�), f 〉 = 〈E,�(f )〉 (� ∈ BA,r (A∗), f ∈ A∗ � A),

where E is anyw∗-cluster point inA∗∗ of the bounded right approximate identity.

Proof. The first assertion follows from[Lau 87, Corollary 5.2](inspection of the proof
shows that the assumption aboutA being anF-algebra made there is actually not
needed). It is easy to check that� is well-defined, and that
 and � are inverse to each
other. �

The next result determines the topological centre of the algebra(A∗�A)∗ for Banach
algebrasA with (M�) such thatA∗ has (F�). It thus provides a partial answer to a
question posed by Lau-Ülger[laul, Section 6, Question (f)].

Theorem 4.2. Let A be a Banach algebra with a right approximate identity bounded
by 1, which has(M�) and whose dual has(F�), for some��ℵ0. Then the topological
centre of(A∗ � A)∗ can be identified(up to isometric algebra isomorphism) with the
algebra RM(A) of right multipliers ofA; i.e.,

Zt((A∗ � A)∗)�RM(A).
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Remark 4.3. The above theorem provides an abstract Banach algebraic version of the
approach presented in[Neu 04] to the topological centre problem for LUC(G)∗ (cf.
[Lau 86]). Indeed, if A = L1(G), then we haveA∗ � A = LUC(G), the space of
bounded left uniformly continuous functions onG, and RM(A) = M(G), by Wendel’s
theorem. Also, as already mentioned in Remark2.5, L1(G) has the property(M�(G)·ℵ0),
and, for any locally compact non-compact group,L∞(G) has the property(UF�(G)·ℵ0).
Thus, Theorem 4.2 yields, for the special caseA = L1(G), the main result of[Lau 86]
in full generality (note that the assertion is simple for compact groupsG), and puts the
latter into a general Banach algebraic framework.

Proof of Theorem 4.2. First we note that taking adjoints yields a canonical identi-
fication of RM(A) with the subalgebra ofw∗-w∗-continuous elements inBA,r (A∗),
which we shall denote byB�

A,r (A∗). We claim thatZt((A∗ � A)∗)�B�
A,r (A∗), the

identification being given by the map
 presented in Proposition4.1. Indeed, an ar-
gument analogous to the one given in the proof of Theorem2.3(i) shows that ifm ∈
Zt((A∗ � A)∗), then 
(m) is a w∗-w∗-continuous map onA∗. On the other hand, fix
� ∈ B�

A,r (A∗). In order to show that�(�) ∈ Zt((A∗ � A)∗), consider a bounded net
(n�) in (A∗ � A)∗ convergingw∗ to 0, andf = h� a ∈ A∗ � A. Recall the canonical
action of n� ∈ (A∗ � A∗) on h ∈ A∗ via 〈n�h, b〉 = 〈n�, h � b〉, for all b ∈ A. We
obtain:

〈�(�)n�, f 〉 = 〈E,�((n�h)� a)〉 = 〈E,�(n�h)� a〉 = 〈�(n�h), a〉
= 〈n�, h� �∗(a)〉 �−→ 0,

which finishes the proof. �

Acknowledgments

The author would like to thank Zhiguo Hu and Gerd Wittstock for valuable discus-
sions on the topic of this paper.

References

[Are 51] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951) 839–
848.

[Com 84] W.W. Comfort, Topological groups, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of
Set-Theoretic Topology, North-Holland, New York, 1984, pp. 1143–1263 (Chapter 24).

[Dal 00] H.G. Dales, Banach algebras and automatic continuity, London Mathematical Society
Monographs New Series, vol. 24, Clarendon Press, Oxford, 2000.

[Dal-Lau 04] H.G. Dales, A.T.-M. Lau, The second dual of Beurling algebras, Mem. Amer. Math.
Soc., to appear.

[Ess 04] G.H. Esslamzadeh, Second dual and topological center of double centralizer algebras and
measure algebras, preprint.



M. Neufang / Journal of Functional Analysis 224 (2005) 217–229 229

[Fre 93] D.H. Fremlin, Real-valued-measurable cardinals, Set theory of the reals (Ramat Gan,
1991), 151–304, Israel Mathematical Conference Proceedings, vol. 6, Bar-Ilan University,
Ramat Gan, 1993.

[Gar-Pfe 84] R.J. Gardner, W.F. Pfeffer, Borel measures, in: K. Kunen, J.E. Vaughan (Eds.), Handbook
of Set-Theoretic Topology, North-Holland, New York, 1984, pp. 961–1043 (Chapter 22).

[Gha-Lau 95] F. Ghahramani, A.T.-M. Lau, Multipliers and ideals in second conjugate algebras related
to locally compact groups, J. Funct. Anal. 132 (1) (1995) 170–191.

[Gha-McC 92] F. Ghahramani, J.P. McClure, Module homomorphisms of the dual modules of convolution
Banach algebras, Canad. Math. Bull. 35 (2) (1992) 180–185.

[Hof-Wit 97] H. Hofmeier, G. Wittstock, A bicommutant theorem for completely bounded module
homomorphisms, Math. Ann. 308 (1) (1997) 141–154.

[Hu-Neu 04] Z. Hu, M. Neufang, Decomposability of von Neumann algebras and the Mazur property
of higher level, Canad. J. Math., to appear.

[Jec 97] T. Jech, Set Theory, 2nd ed., Perspectives in Mathematical Logic, Springer, Berlin, 1997.
[Lau 86] A.T.-M. Lau, Continuity of Arens multiplication on the dual space of bounded uniformly

continuous functions on locally compact groups and topological semigroups, Math. Proc.
Cambridge Philos. Soc. 99 (1986) 273–283.

[Lau 87] A.T.-M. Lau, Uniformly continuous functionals on Banach algebras, Colloq. Math. 51
(1987) 195–205.

[Lau 94] A.T.-M. Lau, Fourier and Fourier–Stieltjes algebras of a locally compact group and
amenability, Topological vector spaces, algebras and related areas, in: A.T.-M. Lau,
I. Tweddle (Eds.), Proceedings of the International Conference held at McMaster
University, Hamilton, Ontario, May 2–6, 1994, Pitman Research Notes in Mathematics
Series, Vol. 316, New York, 1994.

[Lau-Los 88] A.T.-M. Lau, V. Losert, On the second conjugate algebra ofL1(G) of a locally compact
group, J. London Math. Soc. 37 (1988) 464–470.

[Lau-Los 93] A.T.-M. Lau, V. Losert, TheC∗-algebra generated by operators with compact support
on a locally compact group, J. Funct. Anal. 112 (1) (1993) 1–30.

[Lau-Los 04] A.T.-M. Lau, V. Losert, The centre of the second conjugate algebra of the Fourier algebra
for infinite products of groups, Math. Proc. Cambridge Philos. Soc., to appear.

[Lau-Ulg 96] A.T.-M. Lau, A. Ülger, Topological centers of certain dual algebras, Trans. Amer. Math.
Soc. 348 (3) (1996) 1191–1212.

[Neu 04] M. Neufang, A unified approach to the topological centre problem for certain Banach
algebras arising in abstract harmonic analysis, Arch. Math. 82 (2) (2004) 164–171.

[Neu 04a] M. Neufang, Solution to a conjecture by Hofmeier–Wittstock, J. Funct. Anal. 217 (1)
(2004) 171–180.

[Neu 04b] M. Neufang, On the Mazur property and property(X), preprint.
[Pal 94] T.W. Palmer, Banach algebras and the general theory of∗-algebras. Vol. I. Algebras and

Banach algebras, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge
University Press, Cambridge, 1994.

[Sol 71] R.M. Solovay, Real-valued measurable cardinals, Axiomatic set theory (University of
California, Los Angeles, California, 1967), Proceedings of the Symposium on Pure
Mathematics, vol. XIII, Part I (American Mathematical Society, Providence, RI, 1971),
pp. 397–428.


	On a conjecture by Ghahramani--Lau and related problems concerning topological centres
	Introduction
	The topological centre of A** and automatic continuity of module homomorphisms on A*
	Application to the conjecture by Ghahramani--Lau
	The topological centre of ( A* =2ptA)*
	Acknowledgements
	References


