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Recently, Neufang, Ruan and Spronk proved a completely isometric representation the-
orem for the measure algebra M(G) and for the completely bounded (Herz–Schur) mul-
tiplier algebra McbA(G) on B(L2(G)), where G is a locally compact group. We unify
and generalize both results by extending the representation to arbitrary locally compact
quantum groups G = (M,Γ, ϕ, ψ). More precisely, we introduce the algebra Mr

cb(L1(G))
of completely bounded right multipliers on L1(G) and we show that Mr

cb(L1(G)) can

be identified with the algebra of normal completely bounded M̂ -bimodule maps on
B(L2(G)) which leave the subalgebra M invariant. From this representation theorem,
we deduce that every completely bounded right centralizer of L1(G) is in fact imple-
mented by an element of Mr

cb(L1(G)). We also show that our representation framework
allows us to express quantum group “Pontryagin” duality purely as a commutation
relation.
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1. Introduction

Let G be a locally compact group. For each measure µ ∈ M(G), we may define a
completely bounded map Θr(µ) on B(L2(G)) by letting

Θr(µ)(x) =
∫
G

ρ(s)xρ(s)∗dµ(s), (1.1)

where ρ denotes the right regular representation of G. It was shown by Neufang [18]
(cf. also [19, 20, 22]) that Θr determines a completely isometric algebra isomorphism

Θr : M(G) ∼= CBσ,L∞(G)
L(G) (B(L2(G))) (1.2)

from the measure algebra M(G) onto the algebra CBσ,L∞(G)
L(G) (B(L2(G))) of all nor-

mal completely bounded L(G)-bimodule maps on B(L2(G)) which map L∞(G) into
L∞(G). A corresponding result for the completely bounded (Herz–Schur) multiplier
algebra McbA(G) has been proved by Neufang, Ruan and Spronk [22], i.e. there
exists a completely isometric algebra isomorphism

Θ̂ : McbA(G) ∼= CBσ,L(G)
L∞(G)(B(L2(G))) (1.3)

from McbA(G) onto the algebra CBσ,L(G)
L∞(G)(B(L2(G))) of all normal completely

bounded L∞(G)-bimodule maps on B(L2(G)) which map L(G) into L(G). Since we
may regard the Fourier algebra A(G) (respectively, its completely bounded multi-
plier algebra McbA(G)) as the natural dual object of the convolution algebra L1(G)
(respectively, the measure algebra M(G)), (1.2) and (1.3) show that both M(G)
and McbA(G) can be nicely represented on the same space B(L2(G)) in a form that
perfectly displays their duality. The main purpose of this paper is to generalize the
above representation theorems to arbitrary locally compact quantum groups. We
remark that the question whether such a representation result holds in the setting
of Kac algebras, has been raised in [18]. Further developments of this representa-
tion framework for related algebras over locally compact groups are presented, for
instance, in [25, 13].

Locally compact quantum groups (a topological version of quantum groups)
have attracted the attention of mathematicians since Drinfel’d’s ICM talk [5] and
Woronowicz’s discovery of the twisted SUq(2) group [32]. There are several different
definitions of locally compact quantum groups given by Baaj and Skandalis [1],
Woronowicz [33], and Kustermans and Vaes in the C∗-algebra setting [15] and in
the von Neumann algebra setting [16]. For compact quantum groups and discrete
quantum groups, these definitions coincide with those given by Woronowicz [34],
Effros and Ruan [7], and Van Daele [29]. These definitions are also all equivalent
when restricted to Kac algebras.

We will use Kustermans and Vaes’ notion of locally compact quantum groups
G = (M,Γ, ϕ, ψ), where (M,Γ) is a Hopf–von Neumann algebra together with a left
invariant Haar weight ϕ and a right invariant Haar weight ψ. Kac algebras can be
characterized precisely as the locally compact quantum groups that admit a unitary
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antipode κ on M , and whose modular element (i.e. the Radon–Nikodym derivative
of the left Haar weight with respect to the right Haar weight) is affiliated with the
center of M (cf. [15, 27]). We will recall some basic facts about locally compact
quantum groups from [16, 27 and 30] in Sec. 2. For details on Kac algebras, we
refer the reader to Enock and Schwartz’s book [9].

Let G = (M,Γ, ϕ, ψ) be a locally compact quantum group. There exists an
operator space matrix norm on the predual M∗ of M , which we will denote by
L1(G) (see the discussion at the end of Sec. 2). We will also write L∞(G) for M . The
co-multiplication Γ induces an associative completely contractive multiplication

� = Γ∗ : f1 ⊗ f2 ∈ L1(G) ⊗̂L1(G) → f1 � f2 = Γ∗(f1 ⊗ f2) ∈ L1(G). (1.4)

With this multiplication, L1(G) is a completely contractive Banach algebra. If G
is a locally compact group, we get a commutative locally compact quantum group
Ga = (L∞(G),Γa, ϕa, ψa). The co-multiplication Γa is given by Γa(f)(s, t) = f(st)
and the left (respectively, right) Haar weight ϕa (respectively, ψa) is given by the
integral with respect to a left (respectively, right) Haar measure on G. In this
case, L1(Ga) = L1(G) is just the usual convolution algebra. The dual quantum
group Ĝa = (L(G), Γ̂a, ϕ̂a, ψ̂a) is given by the co-commutative Hopf–von Neumann
algebra (L(G), Γ̂a) with the plancherel weight ϕ̂a = ψ̂a. Then L1(Ĝa) = A(G) is
the Fourier algebra.

Given a locally compact quantum group G, there are two fundamental unitary
operators W and V on the Hilbert space tensor product L2(G) ⊗ L2(G) such that
the co-multiplication Γ can be expressed as

Γ(x) = W ∗(1 ⊗ x)W = V (x ⊗ 1)V ∗ (1.5)

for all x ∈M . In particular, if G is a locally compact group, we may define

Waξ(s, t) = ξ(s, s−1t) and Vaξ(s, t) = ξ(st, t)

for all ξ ∈ L2(G × G) = L2(G) ⊗ L2(G). Both fundamental unitary operators W
and V are considered in the literature, depending on the favor of the authors. We
note that W in this paper matches the notation used in [1, 16]. However, our W
corresponds to W ∗ in Enock and Schwartz’s book [9] and many papers on Kac
algebras. We hope that this will not cause any confusion to the reader.

Using these two fundamental unitary operators, we may define two injective
complete contractions

Θl
0 : f ∈ L1(G) → Θl

0(f) = 〈f ⊗ ι,W ∗(1 ⊗ ·)W 〉 ∈ CBσ(B(L2(G))) (1.6)

and

Θr
0 : f ∈ L1(G) → Θr

0(f) = 〈ι⊗ f, V (· ⊗ 1)V ∗〉 ∈ CBσ(B(L2(G))) (1.7)

from L1(G) into CBσ(B(L2(G))). We prove in Proposition 3.1 that Θl
0 is an anti-

homomorphism, and Θr
0 is a homomorphism from L1(G) into CBσ(B(L2(G))).
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Therefore, it is better to study the representation theorem associated with Θr
0.

We note that there is a connection between W and V given by the relation

V = σ(1 ⊗ U)W (1 ⊗ U∗)σ,

where U is a special unitary operator on L2(G) (see the definition given in Sec. 2)
and σ is the flip operator on L2(G) ⊗ L2(G). Therefore, if we wish to use the
left fundamental unitary operator W , we may consider the injective completely
contractive homomorphism

Ξl0 : f ∈ L1(G) → Ξl0(f) = 〈f ⊗ ι,W (1 ⊗ ·)W ∗〉 = U∗Θr
0(f)(U · U∗)U (1.8)

from L1(G) into CBσ(B(L2(G))). The advantage of considering Θr
0 (instead of Ξl0)

is that V (· ⊗ 1)V ∗ = Γ(·) is just the co-multiplication on M . In this case, we get

〈Θr
0(f)(x), f ′〉 = 〈f ′ ⊗ f, V (x⊗ 1)V ∗〉 = 〈f ′ � f, x〉

for x ∈ M and f, f ′ ∈ L1(G). However, we have to consider a “twisted” co-
multiplication W (1 ⊗ ·)W ∗ for Ξl0. Therefore, we will mainly work with Θr

0 and
the right fundamental unitary operator V . This matches our notation used in
(1.1) where, for a locally compact group G, we considered the right representa-
tion Θr : µ ∈M(G) → Θr(µ) ∈ CBσ(B(L2(G))) given by

Θr(µ)(x) =
∫
G

ρ(s)xρ(s)∗dµ(s) = 〈ι⊗ µ, Va(x⊗ 1)V ∗
a 〉.

We first show in Theorem 3.4 that if G is a discrete quantum group, then Θr
0

is a completely isometric algebra isomorphism from L1(G) onto CBσ,M
M̂

(B(L2(G))).

For general locally compact quantum groups, we shall show that CBσ,M
M̂

(B(L2(G)))
corresponds precisely to the natural algebra M r

cb(L1(G)) of completely bounded
right multipliers of L1(G), as introduced and studied in Sec. 4. Indeed, we shall
also prove in this section that the latter algebra can be identified (up to a
completely isometric anti-isomorphism) with the algebra of completely bounded
right centralizers Crcb(L1(G)) of L1(G). We note that completely bounded right
(respectively, left and double) multipliers of A(K) = L1(K̂) for Kac algebras
K have been studied thoroughly by Kraus and Ruan in [14]. The results in
Sec. 4 are the natural generalization and unification of the original results (1.2)
and (1.3), and some results contained in [14, 18, 22], to locally compact quantum
groups.

We present an application of our representation result to quantum group duality
in Sec. 5. The fact that both M r

cb(L1(G)) and M r
cb(L1(Ĝ)) are presented as maps

on the same algebra B(L2(G)) enables us to express their duality simply in terms
of a commutation relation. We also show that M r

cb(L1(G)) equals its bicommutant
taken in CB(B(L2(G))).
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2. Background on Locally Compact Quantum Groups

Let G = (M,Γ, ϕ, ψ) be a locally compact quantum group. The left Haar weight ϕ
induces an inner product

〈Λϕ(x)|Λϕ(y)〉ϕ = ϕ(y∗x)

on Nϕ = {x ∈ M : ϕ(x∗x) < ∞}. We let L2(M,ϕ) denote the Hilbert space
completion of Nϕ. Then we can obtain a conjugate linear isometric isomorphism J

on L2(M,ϕ) and we may use J to isometrically anti-isomorphically identify x ∈M

with Jx∗J ∈M ′, the commutant of M . In this situation, the von Neumann algebra
M is standardly represented on L2(M,ϕ).

There exists a left fundamental unitary operator W on L2(M,ϕ) ⊗ L2(M,ϕ)
associated with ϕ, which is defined by

W ∗(Λϕ(x) ⊗ Λϕ(y)) = (Λϕ ⊗ Λϕ)(Γ(y)(x⊗ 1))

for all x, y ∈ Nϕ. This operator W satisfies the pentagonal relation

W12W13W23 = W23W12 (2.1)

and thus is a multiplicative unitary on L2(M,ϕ) ⊗ L2(M,ϕ), where we let W12 =
W ⊗ 1, W23 = 1 ⊗W and W13 = (σ ⊗ 1)W23(σ ⊗ 1), and we let σ be the flip map
on L2(M,ϕ) ⊗ L2(M,ϕ). The co-multiplication Γ on M can be written as

Γ(x) = W ∗(1 ⊗ x)W. (2.2)

The left regular representation λ : L1(G) → B(L2(M,ϕ)) is defined by

λ(f) = (f ⊗ ι)(W ).

It is easy to verify that λ is an injective completely contractive homomorphism
from L1(G) into B(L2(M,ϕ)), and it is known that M̂ = {λ(f) : f ∈M∗}′′ is a von
Neumann algebra on L2(M,ϕ).

We obtain the dual quantum group Ĝ = (M̂, Γ̂, ϕ̂, ψ̂) with co-multiplication Γ̂
given by

Γ̂(x̂) = Ŵ ∗(1 ⊗ x̂)Ŵ ,

where the fundamental unitary operator Ŵ is given by Ŵ = σW ∗σ. In this case,
we also get the conjugate linear isometry Ĵ on L2(M,ϕ) ∼= L2(M̂, ϕ̂) and the
completely contractive (left) regular representation

λ̂ : f̂ ∈ L1(Ĝ) → (f̂ ⊗ ι)(Ŵ ) = (ι⊗ f̂)(W ∗) ∈M.

It turns out that ˆ̂
M = {λ̂(f̂) : f̂ ∈ M̂∗}

′′
= M and thus we obtain the perfect duality

ˆ̂
G = G!

Similarly, the right Haar weight ψ induces an inner product

〈Λψ(x)|Λψ(y)〉ψ = ψ(y∗x)
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on Nψ = {x ∈ M : ψ(x∗x) < ∞}. We let L2(M,ψ) denote the Hilbert space
completion of Nψ . There exists a right fundamental unitary operator V on
L2(M,ψ) ⊗ L2(M,ψ) associated with ψ, which is defined by

V (Λψ(x) ⊗ Λψ(y)) = (Λψ ⊗ Λψ)(Γ(x)(1 ⊗ y))

for all x, y ∈ Nψ . This operator V also satisfies the pentagonal relation (2.1), i.e.

V12V13V23 = V23V12.

Now, the co-multiplication Γ on M can be written as

Γ(x) = V (x⊗ 1)V ∗. (2.3)

It is known from [15, 16] (also see [27, 30]) that Ĵ determines a *-anti-
automorphism R(x) = Ĵx∗Ĵ on M which satisfies Γ ◦ R = σ(R ⊗ R) ◦ Γ and is
called the unitary antipode of G. For Kac algebras, R is equal to its anitpode κ.
But this is not true for general locally compact quantum groups. It is easy to verify
that ψ = ϕ ◦R is a right Haar weight on M , and we will fix this ψ throughout the
paper. Since ψ(x∗x) = ϕ(R(x)R(x)∗) for all x ∈ Nψ, the map

Ĵ(Λψ(x)) = Λϕ(R(x∗))

extends to a conjugate linear isometric isomorphism from L2(M,ψ) onto L2(M,ϕ)
(cf. [27, Proposition 1.13.14]). Since we may isometrically identify L2(M,ϕ) and
L2(M,ψ), we will simply use the notation L2(G) for this Hilbert space.

We note that for general locally compact quantum groups, U = ĴJ is a unitary
operator on L2(G) satisfying

ĴJ = v
i
4 JĴ (2.4)

(cf. [27, Corollary 1.13.15]). Since

(Ĵ ⊗ J)W (Ĵ ⊗ J) = W ∗, (2.5)

V and W are related by the following formula

V = σ(Ĵ ⊗ Ĵ)W ∗(Ĵ ⊗ Ĵ)σ = σ(1 ⊗ U)W (1 ⊗ U∗)σ. (2.6)

Since W ∈M ⊗̄ M̂ , we get V ∈ M̂ ′ ⊗̄M and

(J ⊗ Ĵ)V (J ⊗ Ĵ) = V ∗. (2.7)

The right regular representation ρ : L1(G) → B(L2(G)) can be defined by

ρ(f) = (ι⊗ f)(V ) = Uλ(f)U∗ ∈ M̂ ′. (2.8)

The corresponding dual quantum group can be expressed as Ĝ′ = (M̂ ′, Γ̂′, ϕ̂′, ψ̂′),
where the co-multiplication Γ̂′ is given by

Γ̂′(x̂′) = V̂ (x̂′ ⊗ 1)V̂ ∗ = σ(Ĵ ⊗ Ĵ)Γ̂(Ĵ x̂′Ĵ)(Ĵ ⊗ Ĵ)σ.
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In this case (by considering the duality of G and Ĝ′), we have

V̂ = σ(Ĵ ⊗ Ĵ)Ŵ ∗(Ĵ ⊗ Ĵ)σ ∈M ⊗̄ M̂ ′, (2.9)

and thus we obtain

V̂ = (Ĵ ⊗ Ĵ)W (Ĵ ⊗ Ĵ) = σV ∗σ. (2.10)

We note that Vaes considered

V̂ = σ(J ⊗ J)Ŵ ∗(J ⊗ J)σ = (J ⊗ J)W (J ⊗ J) ∈M ′ ⊗̄ M̂

in [27], which is unitarily equivalent to our definition given in (2.9) via the unitary
operator U ⊗ U . But the latter does not satisfy V̂ = σV ∗σ. So we will use (2.9)
throughout this paper.

Given a locally compact quantum group G, we let M,M ′, M̂ and M̂ ′ be the von
Neumann algebras associated with G and let 〈MM̂〉 denote the σ-weak closure of
the linear span of MM̂ = {xŷ : x ∈ M, ŷ ∈ M̂} in B(L2(G)). There are two useful
results for our representation theorem.

Proposition 2.1. We have

M ∩ M̂ = M ′ ∩ M̂ = M ∩ M̂ ′ = M ′ ∩ M̂ ′ = C1.

Proposition 2.2. We have

〈M̂ ′M〉 = 〈M̂M ′〉 = 〈MM̂〉 = 〈M ′M̂ ′〉 = B(L2(G)).

Proposition 2.1 is well-known for Kac algebras (cf. Enock and Schwartz’s book
[9, Corollary 4.1.5]). It is also true for locally compact quantum groups (cf. Vaes
and Van Daele [28] and Van Daele [30]). Since the σ-weak closure 〈MM̂〉 is a
von Neumann algebra and its commutant is equal to M ′ ∩ M̂ ′ = C1, this shows
that 〈MM̂〉 = B(L2(G)). This proof can be found in Vaes and van Daele [28,
Proposition 2.5]. We would like to thank Leonid Vaineman to point out this refer-
ence to us.

Finally, we make the following remark on the operator space structure of L1(G).
Assume that we are given an orthonormal basis {ξi} for L2(G). Then the rank one
operators eij = θξiθ

∗
ξj

∼= ξi ⊗ ξ∗j ; form a system of matrix unit for B(L2(G)).
With this matrix unit, we can obtain a canonical operator space matrix norm on
T (L2(G)) via the parallel duality

〈x, y〉 =
∑
ij

xijyij = tr(xty) (2.11)

for x ∈ T (L2(G)) and y ∈ B(L2(G)) (for details, see [8]). Here, we let tr denote the
trace on B(L2(G)) and xt denote the transpose of x. In this case, the corresponding
dual basis in T (L2(G)) is given by

êij = θ∗ξi
θξj = etij · tr.
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Throughout this paper, we assume that T (L2(G)) is equipped with this canonical
operator space structure and assume that L1(G) carries the operator space stucture
stemming from the quotient space T (L2(G))/M⊥. With this in mind, we obtain
the canonical operator space matrix norm on Sp(L2(G)), the Schatten p-classes on
L2(G), via complex interpolation (see Pisier’s work [23 or 24]).

3. The Representation for Discrete Quantum Groups

Let us first consider the maps Θl
0 and Θr

0 defined in (1.6) and (1.7).

Proposition 3.1. Let G be a locally compact quantum group.

(1) Θl
0 is an injective completely contractive anti-homomorphism from L1(G) into

CBσ,M
M̂ ′ (B(L2(G))).

(2) Θr
0 is an injective completely contractive homomorphism from L1(G) into

CBσ,M
M̂

(B(L2(G))).

Proof. We shall first consider Θl
0. Since W ∈ M ⊗̄ M̂ , we get W (1 ⊗ x)W ∗ ∈

M ⊗̄ B(L2(G)) for all x ∈ B(L2(G)), and we obtain

Θl
0(f1 � f2)(x) = 〈f1 ⊗ f2 ⊗ ι, (Γ ⊗ ι)(W ∗(1 ⊗ x)W )〉

= 〈f1 ⊗ f2 ⊗ ι,W ∗
12W

∗
23(1 ⊗ 1 ⊗ x)W23W12〉

= 〈f1 ⊗ f2 ⊗ ι,W ∗
23W

∗
13(1 ⊗ 1 ⊗ x)W13W23〉

= 〈f2 ⊗ ι,W ∗(1 ⊗ Θl
0(f1)(x))W 〉 = Θl

0(f2)(Θ
l
0(f1)(x))

for all f1, f2 ∈ L1(G). This shows that Θl
0(f1 � f2) = Θl

0(f2) ◦ Θl
0(f1) and thus

Θl
0 is an injective completely contractive anti-homomorphism from L1(G) into

CBσ(B(L2(G))). Since W ∈M ⊗̄ M̂ , for each f ∈ L1(G),

Θl
0(f) = 〈f ⊗ ι,W ∗(1 ⊗ ·)W 〉

is clearly an M̂ ′-bimodule map. Moreover, if x ∈M we have W ∗(1⊗x)W = Γ(x) ∈
M ⊗̄M . Therefore, Θl

0(f) maps M into M. This shows that Θl
0 is an injective

completely contractive anti-homomorphism from L1(G) into CBσ,M
M̂ ′ (B(L2(G))).

Similarly, since V (x ⊗ 1)V ∗ ∈ B(L2(G)) ⊗̄M for all x ∈ B(L2(G)), we obtain

Θr
0(f1 � f2)(x) = 〈ι⊗ f1 ⊗ f2, (ι⊗ Γ)(V (x⊗ 1)V ∗)〉

= 〈ι⊗ f1 ⊗ f2, V23V12(x⊗ 1 ⊗ 1)V ∗
12V

∗
23〉

= 〈ι⊗ f1 ⊗ f2, V12V13(x⊗ 1 ⊗ 1)V ∗
13V

∗
12〉

= 〈ι⊗ f1, V (Θr
0(f2)(x) ⊗ 1)V ∗〉 = Θr

0(f1)(Θ
r
0(f2)(x))

for all f1, f2 ∈ L1(G).
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This shows that Θr
0(f1 � f2) = Θr

0(f1) ◦ Θr
0(f2), and thus Θr

0 is an injec-
tive completely contractive homomorphism from L1(G) into CBσ(B(L2(G))). Since
V ∈ M̂ ′ ⊗̄M , for each f ∈ L1(G),

Θr
0(f) = 〈ι⊗ f, V (· ⊗ 1)V ∗〉

is an M̂ -bimodule map. Moreover, if x ∈M we have V (x⊗ 1)V ∗ = Γ(x) ∈M ⊗̄M .
Therefore, Θr

0(f) maps M into M. This shows that Θr
0 is an injective completely

contractive homomorphism from L1(G) into CBσ,M
M̂

(B(L2(G))).

Proposition 3.2. Let G be a locally compact quantum group. If Φ is a normal
completely bounded map in CBσ,M

M̂
(B(L2(G))), then there exists a unique b̂′ ∈ M̂ ′

such that

(ι⊗ Φ)(V ) = V (b̂′ ⊗ 1). (3.1)

In particular, if Φ = Θr
0(f) for some f ∈ L1(G), then b̂′ = ρ(f).

Proof. The idea is similar to the argument given in [22, Theorem 4.2]. Since Φ is
a normal completely bounded M̂ -bimodule map on B(L2(G)), it is known from an
unpublished result of Haagerup [10] that there exist two nets of elements {â′i} and
{b̂′i} in M̂ ′ such that

Φ(x) =
∑
i∈I

â′ixb̂
′
i,

converging in the weak∗ topology on B(L2(G)), for all x ∈ B(L2(G)). Now we can
write

V̂ (Φ ⊗ ι)(V̂ ∗) =
∑
i∈I

V̂ (â′i ⊗ 1)V̂ ∗(b̂′i ⊗ 1). (3.2)

Since V̂ (â′i ⊗ 1)V̂ ∗ = Γ̂′(â′i) ∈ M̂ ′ ⊗̄ M̂ ′, the right-hand side of (3.2) belongs to
M̂ ′ ⊗̄ M̂ ′. But the left-hand side of (3.2) belongs to M ⊗̄ M̂ ′ because both V̂ and
(Φ ⊗ ι)(V̂ ∗) belong to M ⊗̄ M̂ ′. It follows from Proposition 2.1 that

V̂ (Φ ⊗ ι)(V̂ ∗) ∈ (M̂ ′ ⊗̄ M̂ ′) ∩ (M ⊗̄ M̂ ′) = C ⊗̄ M̂ ′,

and thus there exists b̂′ ∈ M̂ ′ such that

V̂ (Φ ⊗ ι)(V̂ ∗) = 1 ⊗ b̂′.

Since V̂ ∗ = σV σ, we conclude that

(ι⊗ Φ)(V ) = V (b̂′ ⊗ 1).

The uniqueness of b̂′ is obvious.
Now if Φ = Θr

0(f) for some f ∈ L1(G), then we must have b̂′ = ρ(f) since for
all ω ∈ T (L2(G)) and g ∈ L1(G),

〈ω ⊗ g, (ι⊗ Θr
0(f))(V )〉 = 〈ω ⊗ g � f, V 〉 = 〈ω, ρ(g � f)〉

= 〈ω, ρ(g)ρ(f)〉 = 〈ω ⊗ g, V (ρ(f) ⊗ 1)〉.
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Proposition 3.3. The induced map

Πr : Φ ∈ CBσ,M
M̂

(B(L2(G))) → b̂′ ∈ M̂ ′ (3.3)

is a unital completely contractive algebra homomorphism.

Proof. Given [Φij ] ∈ Mn(CBσ,MM̂ (B(L2(G)))), we let [b̂′ij ] = [Πr(Φij)] ∈ Mn(M)
and obtain

‖[b̂′ij]‖ = ‖[V (b̂′ij ⊗ 1)]‖ = ‖[(ι⊗ Φij)(V )]‖ ≤ ‖[Φij ]‖cb.

This shows that Πr is a complete contraction from CBσ,M
M̂

(B(L2(G))) into M̂ ′. To

prove that Πr is a homomorphism, we consider Φ1 and Φ2 in CBσ,M
M̂

(B(L2(G))),
and we have

(ι⊗ Φ1 ◦ Φ2)(V ) = (ι⊗ Φ1)(V (b̂′2 ⊗ 1)) = V (b̂′1b̂
′
2 ⊗ 1).

Therefore, Πr(Φ1 ◦ Φ2) = b̂′1b̂
′
2 = Πr(Φ1)Πr(Φ2).

It is easy to see from Propositions 3.2 and 3.3 that the composition map Πr ◦Θr
0

is simply equal to the right regular representation ρ, i.e. we have

ρ = Πr ◦ Θr
0 : L1(G) → M̂ ′. (3.4)

Now we are ready to prove our representation theorem for discrete quantum
groups.

Theorem 3.4. Let G be a discrete quantum group. Then the map Θr
0 is a com-

pletely isometric algebra isomorphism from L1(G) onto CBσ,M
M̂

(B(L2(G))).

Proof. Let us first show that Θr
0 is surjective. Given Φ ∈ CBσ,M

M̂
(B(L2(G))), it is

known from Proposition 3.2 that there exists b̂′ ∈ M̂ ′ such that

(ι⊗ Φ)(V ) = V (b̂′ ⊗ 1).

For every f ∈ L1(G), we let fΦ = f ◦ Φ|M ∈ L1(G). Then we have

ρ(fΦ) = (ι⊗ f ◦ Φ)(V ) = ρ(f)b̂′. (3.5)

This shows that b̂′ is a completely bounded right multiplier of L1(G) associated
with the right regular representation ρ (see the discussion in Sec. 4).

Since G is a discrete quantum group, L1(G) has a contractive identity f0. In
this case, ρ(f0) = 1 is the identity operator in M̂ ′. We claim that fΦ

0 is an element
in L1(G) such that Θr

0(f
Φ
0 ) = Φ on B(L2(G)).
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To see this, let us consider x = (f̂ ⊗ ι)(V ) ∈ M for some f̂ ∈ M̂ ′∗. For every
ω ∈ T (L2(G)), we let f ∈ L1(G) denote the restriction of ω to M . Then we have

〈Θr
0(f

Φ
0 )(x), ω〉 = 〈f ⊗ fΦ

0 , V (x ⊗ 1)V ∗〉 = 〈f � fΦ
0 , x〉

= 〈f̂ ⊗ f � fΦ
0 , V 〉 = 〈f̂ , ρ(f � fΦ

0 )〉 = 〈f̂ , ρ(f)ρ(fΦ
0 )〉

= 〈f̂ , ρ(f)ρ(f0)b̂′〉 = 〈f̂ , ρ(f)b̂′〉 = 〈f̂ , ρ(fΦ)〉

= 〈f̂ ⊗ f ◦ Φ, V 〉 = 〈Φ(x), ω〉.

This shows that Θr
0(f

Φ
0 ) = Φ on the weak∗ dense subspace

ρ̂(M̂ ′
∗) = {x = (f̂ ⊗ ι)(V ) : f̂ ∈ M̂ ′

∗}

of M . By the normality of Φ and Θr
0(f

Φ
0 ), we get Θr

0(f
Φ
0 ) = Φ on M . Moreover,

since both Θr
0(fΦ

0 ) and Φ are M̂ -bimodule maps, we have

Θr
0(f

Φ
0 )(xŷ) = Θr

0(f
Φ
0 )(x)ŷ = Φ(x)ŷ = Φ(xŷ)

for all x ∈ M and ŷ ∈ M̂ . Therefore, we must have Θr
0(f

Φ
0 ) = Φ on B(L2(G)) by

Proposition 2.2. This shows that Θr
0 is an algebra isomorphism from L1(G) onto

CBσ,M
M̂

(B(L2(G))).

From this discussion, it is easy to see that if [Φij ] ∈ Mn(CBσ,MM̂ (B(L2(G)))),

then [fΦij

0 ] is an element in Mn(L1(G)) with

‖[fΦij

0 ]‖Mn(L1(G)) ≤ ‖[Φij ]‖Mn(CBσ,M

M̂
(B(L2(G)))).

Therefore, Θr
0 is a completely isometric algebra isomorphism from L1(G) onto

CBσ,M
M̂

(B(L2(G))).

We can analogously prove the following result for Θl
0.

Theorem 3.5. Let G be a discrete quantum group. Then the map Θl
0 is a com-

pletely isometric algebra anti-isomorphism from L1(G) onto CBσ,M
M̂ ′ (B(L2(G))).

4. Completely Bounded Right Multipliers of L1(G)

In this section, we will be concerned with generalizing Theorem 3.4 to arbitrary
locally compact quantum groups. To achieve this goal, we need first to consider an
appropriate extension of Θr

0 to a larger Banach algebra (a kind of multiplier algebra
of L1(G)) because the completely contractive Banach algebra CBσ,M

M̂
(B(L2(G))) is

unital and a dual space. However, the Banach algebra L1(G) is in general not a
dual space, and it is unital if and only if G is discrete.

Let us recall from Proposition 3.2 that if Φ ∈ CBσ,M
M̂

(B(L2(G))), then there

exists b̂′ ∈ M̂ ′ such that

(ι⊗ Φ)(V ) = V (b̂′ ⊗ 1).
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It is also known from (3.5) that for every f ∈ L1(G), we have

ρ(f)b̂′ = (ι⊗ f ◦ Φ)(V ) = ρ(fΦ).

Since ρ is an injective map, we obtain a completely bounded map

mr
b̂′ = (Φ|M )∗ : f ∈ L1(G) → ρ−1(ρ(f)b̂′) = fΦ ∈ L1(G)

on L1(G) with ‖mr
b̂′
‖cb ≤ ‖Φ‖cb. We call such an operator b̂′ ∈ M̂ ′ a completely

bounded right multiplier of L1(G). In general, we say that an operator b̂′ ∈ M̂ ′ is a
completely bounded right multiplier of L1(G) (associated with the right fundamental
unitary operator V ) if we have ρ(f)b̂′ ∈ ρ(L1(G)) for all f ∈ L1(G) and the induced
map

mr
b̂′ : f ∈ L1(G) → ρ−1(ρ(f)b̂′) ∈ L1(G) (4.1)

is completely bounded on L1(G). We let M r
cb(L1(G)) denote the space of all com-

pletely bounded right multipliers of L1(G). Then it is easy to see thatM r
cb(L1(G)) is

a unital subalgebra of M̂ ′ and we can identify L1(G) with the subalgebra ρ(L1(G))
in M r

cb(L1(G)).
We remark that completely bounded (left, right, and double) multipliers of

A(K) = L1(K̂) for Kac algebras K (associated with the left fundamental uni-
tary operator W ) have been studied by Kraus and Ruan in [14]. Some equivalent
conditions for left completely bounded multipliers on A(K) were proved in [14,
Proposition 5.6]. The following proposition shows that these results can be ana-
loguously generalized to locally compact quantum groups.

Let G be a locally compact quantum group, and let ρ∗ : L1(Ĝ′) = M̂ ′
∗ →M be

the complete contraction defined by

ρ∗(f̂ ′) = (f̂ ′ ⊗ ι)(V ).

We have

〈ρ∗(f̂ ′), f〉 = 〈f̂ ′ ⊗ f, V 〉 = 〈f̂ ′, ρ(f)〉 (4.2)

for all f ∈ L1(G) and f̂ ′ ∈ L1(Ĝ′). It is known that

A = ρ̂′(L1(Ĝ′))
‖·‖

= ρ∗(L1(Ĝ′))
‖·‖

is a Hopf-C∗-subalgebra ofM . The dual spaceA∗ is a completely contractive Banach
algebra with mulplication given by

〈f̃1 � f̃2, ρ∗(f̂ ′)〉 = 〈f̂ ′ ⊗ f̃1 ⊗ f̃2, V23V12V
∗
23〉 = 〈f̂ ′ ⊗ f̃1 ⊗ f̃2, V12V13〉 (4.3)

and A∗ contains L1(G) as a norm closed two-sided ideal.

Proposition 4.1. Let b̂′ be an operator in M̂ ′. Then the following are equivalent:

(1) b̂′ ∈M r
cb(L1(G)) satisfies ‖mr

b̂′
‖cb ≤ 1;

(2) we have

‖[ρ∗(b̂′ · f̂ ′
ij)]‖ ≤ ‖[ρ∗(f̂ ′

ij)]‖

for all [f̂ ′
ij ] ∈Mn(L1(Ĝ′)) and n ∈ N;
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(2′) there exists a complete contraction M r
b̂′

on A such that

M r
b̂′(ρ∗(f̂

′)) = ρ∗(b̂′ · f̂ ′)

for all f̂ ′ ∈ L1(Ĝ′);
(3) there exists a complete contraction m̃r

b̂′
on the Banach algebra A∗ such that

m̃r
b̂′(f � f̃) = f � m̃r

b̂′(f̃)

for all f ∈ L1(G) and f̃ ∈ A∗ and (m̃r
b̂′

)|L1(G) = mr
b̂′

;
(4) there exists a normal complete contraction Φr

b̂′
on M such that

(ι⊗ Φr
b̂′)(V ) = V (b̂′ ⊗ 1).

In this case, we actually have M r
b̂′

= (mr
b̂′

)∗|A.

Proof. Assume that we have (1). For any [fkl] ∈Mn(L1(G)), we have

‖[〈ρ∗(b̂′ · f̂ ′
ij), fkl〉]‖ = ‖[〈f̂ ′

ij , ρ(fkl)b̂
′〉]‖ = ‖[〈ρ∗(f̂ ′

ij),m
r
b̂′(fkl)〉]‖

≤ ‖[ρ∗(f̂ ′
ij)]‖‖[fkl]‖.

We obtain (2) by taking the supremum over all [fkl] in the unit ball of Mn(L1(G)).
It is clear that (2) is equivalent to (2′) with M r

b̂′
: A→ A determined by

M r
b̂′(ρ∗(f̂

′)) = ρ∗(b̂′ · f̂ ′).

Now if we have (2′), we let m̃r
b̂′

= (M r
b̂′

)∗ be the adjoint map on A∗. For any f̃ ∈ A∗

and f̂ ′ ∈ L1(Ĝ′), we obtain

〈m̃r
b̂′(f̃), ρ∗(f̂ ′)〉 = 〈f̃ ,M r

b̂′(ρ∗(f̂
′))〉 = 〈f̃ , ρ∗(b̂′ · f̂ ′)〉.

This is equivalent to

〈f̂ ′ ⊗ m̃r
b̂′(f̃), V 〉 = 〈f̂ ′ ⊗ f̃ , V (b̂′ ⊗ 1)〉.

Since L1(G) is a norm closed two-sided ideal in A∗, we have

〈m̃r
b̂′(f � f̃), ρ∗(f̂ ′)〉 = 〈f̂ ′ ⊗ f � f̃ , V (b̂′ ⊗ 1)〉 = 〈f̂ ′ ⊗ f ⊗ f̃ , V23V12V

∗
23(b̂

′ ⊗ 1)〉

= 〈f̂ ′ ⊗ f ⊗ f̃ , V12V13(b̂′ ⊗ 1)〉 = 〈f̂ ′ ⊗ f ⊗ m̃r
b̂′(f̃), V12V13〉

= 〈f̂ ′ ⊗ f � m̃r
b̂′(f̃), V 〉 = 〈f � m̃r

b̂′(f̃), ρ∗(f̂ ′)〉

for all f ∈ L1(G), f̃ ∈ A∗ and f̂ ′ ∈ L1(Ĝ′). This shows that

m̃r
b̂′(f � f̃) = f � m̃r

b̂′(f̃) ∈ L1(G).

Since the multiplication m is a complete quotient map from L1(G) ⊗̂L1(G) onto
L1(G), we can conclude that m̃r

b̂′
maps L1(G) into L1(G). Moreover, the restriction
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of m̃r
b̂′

to L1(G) is equal to mr
b̂′

since

〈m̃r
b̂′(f), ρ∗(f̂ ′)〉 = 〈f, ρ∗(b̂′ · f̂ ′)〉 = 〈ρ(f)b̂′, f̂ ′〉 = 〈mr

b̂′(f), ρ∗(f̂ ′)〉.

This proves (3). It is clear that (3) implies (1).
Now if we have (3), it is easy to see that Φr

b̂′
= (mr

b̂′
)∗ is a normal complete

contraction on M such that

〈f̂ ′ ⊗ f, (ι⊗ Φr
b̂′)(V )〉 = 〈f̂ ′ ⊗mr

b̂′(f), V 〉 = 〈f̂ ′ ⊗ f, V (b̂′ ⊗ 1)〉.

This proves (4).
Finally, let us assume (4). Then for any f ∈ L1(G), we have

ρ(f)b̂′ = (ι⊗ f)(V (b̂′ ⊗ 1)) = (ι⊗ f ◦ Φr
b̂′)(V ) = ρ((Φr

b̂′)∗(f)) ∈ ρ(L1(G))

and mr
b̂′

= (Φr
b̂′

)∗ is a complete contraction on L1(G). This shows that b̂′ is a
completely bounded right multiplier on L1(G), and we obtain (1).

Following Johnson’s terminology in [12], a completely bounded map T on L1(G)
is said to be a completely bounded right centralizer on L1(G) if it satisfies

f1 � T (f2) = T (f1 � f2) (4.4)

for all f1, f2 ∈ L1(G). We let Crcb(L1(G)) denote the space of all completely bounded
right centralizers of L1(G). Since L1(G) is a closed two-sided ideal in A∗, it is easy
to see that for every f̃ ∈ A∗, the right multiplication map

mr
f̃

: f ∈ L1(G) → f � f̃ ∈ L1(G)

is a completely bounded right centralizer of L1(G). This determines an injective
completely contractive anti-homomorphism from L1(G) ⊆ A∗ into Crcb(L1(G)).

It is also known from (3) of Proposition 4.1 that if b̂′ is a completely bounded
right multiplier of L1(G), then the induced map mr

b̂′
is a completely bounded right

centralizer of L1(G). We have a canonical linear injection

mr : b̂′ ∈M r
cb(L1(G)) → mr

b̂′ ∈ Crcb(L1(G)),

which is an anti-homomorphism since

mr
b̂′1 b̂

′
2
(f) = ρ−1(ρ(f)b̂′1b̂

′
2) = ρ−1(ρ(mr

b̂′1
(f))b̂′2) = mr

b̂′2
◦mr

b̂′1
(f).

In particular, if b̂′ = ρ(f) for some f ∈ L1(G), then we actually have

mr
ρ(f) = mr

f . (4.5)

If we consider the adjoint maps Φr
b̂′

= (mr
b̂′

)∗, we obtain an injective algebraic
homomorphism

Φr : b̂′ ∈M r
cb(L1(G)) → Φr

b̂′ ∈ CBσ(L∞(G)).
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We say that a normal completely bounded map Φ on L∞(G) is right covariant
if it satisfies

(ι⊗ Φ) ◦ Γ = Γ ◦ Φ. (4.6)

We let CBσcov(L∞(G)) denote the space of all completely bounded normal right
covariant maps on L∞(G). We note that a normal completely bounded map Φ
on L∞(G) satisfies condition (4.6) if and only if it is a right L1(G)-module
map on L∞(G). Therefore, we may also use the notation BσL1(G)r (L∞(G)) for
CBσcov(L∞(G)).

It is easy to see that right covariance is a dual characterization of the right
centralizer property, i.e. (4.6) is just the dual form of condition (4.4) since

〈(ι ⊗ ΦT ) ◦ Γ(x), f ⊗ g〉 = 〈x, f � T (g)〉

and

〈Γ ◦ ΦT (x), f ⊗ g〉 = 〈x, T (f � g)〉

for all x ∈ L∞(G) and f, g ∈ L1(G). Therefore, the adjoint map

T ∈ Crcb(L1(G)) → ΦT = T ∗ ∈ CBσcov(L∞(G))

is a completely isometric and algebraic anti-isomorphism from Crcb(L1(G)) onto
CBσcov(L∞(G)). We can summarize our discussion in the following result.

Proposition 4.2. If we define the operator space matrix norm

‖[b̂′ij ]‖Mn(Mr
cb(L1(G))) = ‖[mr

b̂′ij

]‖cb = ‖[Φr
b̂′ij

]‖cb

on M r
cb(L1(G)), then

mr : b̂′ ∈M r
cb(L1(G)) → mr

b̂′ ∈ Crcb(L1(G))

is a completely isometric algebra anti-homomorphism, and

Φr : b̂′ ∈M r
cb(L1(G)) → Φr

b̂′ ∈ CBσcov(L∞(G))

is a completely isometric algebra homomorphism.

We can show in the following representation theorem that mr and Φr are actu-
ally surjective. Therefore, we may regard M r

cb(L1(G)) as a concrete realization of
Crcb(L1(G)) or CBσcov(L∞(G)) inside the von Neumann algebra M̂ ′ (see the detailed
discussion for Kac algebras in [14]). Now let us assume that T ∈ Crcb(L1(G)) is a
completely bounded right centralizer and ΦT is the corresponding right covariant
map in CBσcov(L∞(G)). We can obtain the following result.

Proposition 4.3. For each ΦT ∈ CBσcov(L∞(G)), there exists a unique map Φ̃T ∈
CBσ,M

M̂
(B(L2(G))) such that Φ̃T |L∞(G) = ΦT . This defines a completely isometric

algebra homomorphism

E : ΦT ∈ CBσcov(L∞(G)) → Φ̃T ∈ CBσ,M
M̂

(B(L2(G))).
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Proof. Our first aim is to extend ΦT to a map Φ̃T ∈ CBσ,M
M̂

(B(L2(G))). To this
end, let us consider the map

Ψ : x ∈ B(L2(G)) → V ∗[(ι⊗ ΦT )(V (x⊗ 1)V ∗)]V ∈ B(L2(G)) ⊗̄M.

We claim that the range of Ψ is actually contained in B(L2(G)) ⊗̄C. To see this,
first note that for x ∈M and x̂ ∈ M̂ , we have

Ψ(xx̂) = V ∗[(ι⊗ ΦT )(V (xx̂⊗ 1)V ∗)]V = V ∗[(ι⊗ ΦT )(Γ(x))]V (x̂⊗ 1)

= V ∗V (ΦT (x) ⊗ 1)V ∗V (x̂ ⊗ 1) = ΦT (x)x̂ ⊗ 1.

This shows that

Ψ(xx̂) = ΦT (x)x̂⊗ 1.

Similarly we obtain:

Ψ(x̂x) = x̂ΦT (x) ⊗ 1.

(In particular, if we let x = 1, we get ΦT (1) ∈ M̂ ′ ∩M = C1.) Using the normality
of Ψ and the density result from Proposition 2.2, we can conclude that Ψ(x) ∈
B(L2(G)) ⊗̄C for all x ∈ B(L2(G)).

Let Φ̃T be the normal map on B(L2(G)) such that

Φ̃T (x) ⊗ 1 = V ∗[(ι⊗ ΦT )(V (x ⊗ 1)V ∗)]V.

Then it is clear that Φ̃T |L∞(G) = ΦT and Φ̃T is an M̂ -bimodule map. Therefore,
Φ̃T ∈ CBσ,M

M̂
(B(L2(G))) such that

‖ΦT ‖cb ≤ ‖Φ̃T ‖cb ≤ ‖ΦT‖cb = ‖T ‖cb.

The uniqueness of Φ̃T is obvious. This shows that E is an isometric linear injec-
tion. It is easy to see that E is actually a complete isometry and is an algebra
homomorphism.

Corollary 4.4. For each T ∈ Crcb(L1(G)), there exists a unique b̂′ ∈ M r
cb(L1(G))

such that

T = mr
b̂′ and ΦT = Φr

b̂′ .

Thus, M r
cb(L1(G)) is completely isometric and algebra anti-isomorphic (respectively,

completely isometric and algebra isomorphic) to Crcb(L1(G)) (respectively,
CBσcov(L∞(G))).

Proof. We have already shown that

Φr : b̂′ ∈M r
cb(L1(G)) → Φr

b̂′ ∈ CBσcov(L∞(G))
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is a completely isometric algebra homomorphism. We only need to prove that this
map is also onto. Given T ∈ Crcb(L1(G)), let Φ̃T be the corresponding map contained
in CBσ,M

M̂
(B(L2(G))) such that Φ̃T |M = ΦT . Then there exists b̂′ ∈ M̂ ′ such that

(ι⊗ Φ̃T )(V ) = V (b̂′ ⊗ 1).

This implies that T = mr
b̂′

(f) and thus ΦT = Φr
b̂′

.

Corollary 4.4 shows that we can obtain a completely contractive unital anti-
homomorphism

ρ̃ : T ∈ Crcb(L1(G)) → ρ̃(T ) = b̂′ ∈ M̂ ′

such that T = mr
b̂′
. This proivdes a natural extension of ρ to Crcb(L1(G)). Indeed, we

can (anti-isomorphically) identify L1(G) with the subalgebra mr(L1(G)) = {mr
f :

f ∈ L1(G)} in Crcb(L1(G)) and we can conclude from (4.5) and Corollary 4.4 that
ρ̃(mr

f ) = ρ(f) for f ∈ L1(G). This generalizes the classical result (cf. [31, 14]) to
locally compact quantum groups. In particular, L1(G) is unital, i.e. G is a discrete
quantum group, if and only if we have L1(G) ∼= Crcb(L1(G)), or equivalently, we
have

M r
cb(L1(G)) = ρ(L1(G)).

We may also (anti-isomorphically) identify A∗ with a subalgebra m̃r(A∗) in
Crcb(L1(G)). Then ρ̃ defines a completely contractive homomorphism from A∗ into
M r

cb(L1(G)) ⊆ M̂ ′, which extends ρ. In general, ρ̃(A∗) is not equal to M r
cb(L1(G)).

We have the equality if and only if G is co-amenable. We will pursue a thorough
investigation of the co-amenable case in the forthcoming paper [21].

Summarizing, we can now state the main representation theorem of this paper,
which extends Theorem 3.4 to the setting of arbitrary locally compact quantum
groups.

Theorem 4.5. Let G be a locally compact quantum group. Then there exists a
completely isometric algebra isomorphism Θr = E ◦ Φr from M r

cb(L1(G)) onto
CBσ,M

M̂
(B(L2(G))), and we can completely isometrically and algebraically identify

the following completely contractive Banach algebras

M r
cb(L1(G)) ∼= CBσcov(L∞(G)) ∼= CBσ,M

M̂
(B(L2(G))).

Remark 4.6. It is known (cf. [22]) that if G is a locally compact group, then
the completely isometric representations Θr : M(G) ∼= CBσ,L∞(G)

L(G) (B(L2(G))) and

Θ̂ : McbA(G) ∼= CBσ,L(G)
L∞(G)(B(L2(G))) are weak∗-weak∗ continuous (with respect

to their canonical preduals). In the forthcoming paper [21], we can show that for
an arbitrary locally compact quantum group G, M r

cb(L1(G)) is a dual space (in
fact, a dual Banach algebra) and, when G is co-amenable, the representation map
Θr : M r

cb(L1(G)) ∼= CBσ,M
M̂

(B(L2(G))) is weak∗-weak∗ continuous. However, we do
not know whether this is still true for general (non-co-amenable) G.
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The difficulty lies in the fact that the passage through CBσcov(L∞(G)) is, in
general, discontinuous. This can be seen as follows. Consider the completely iso-
metrically isomorphic spaces X := CBσ,M

M̂
(B(L2(G))), Y := CBσcov(L∞(G)) and

Z := M r
cb(L1(G)). Denote by R the restriction map from X to Y and by S the

canonical map from Y to Z. Then Θr is the inverse of S ◦ R. Endow X and Z

with their weak∗ topologies and Y with the (natural) point-weak∗ topology. Then
R and S can be both discontinuous. Indeed, let G be a non-compact, locally com-
pact, amenable group and M = L∞(G). Let m be an invariant mean on LUC(G),
the space of bounded left uniformly continuous functions on G and choose a net of
measures µi in M(G) which tends weak∗ in LUC(G)∗ to m. Then µi tends weak∗

in Z = M(G) to 0 (since m vanishes on C0(G)). Also, Θr(µi) tends weak∗ in X to
0, since the weak∗ topology of X is the one inherited from

CBσ(B(L2(G))) = CB(K(L2(G)),B(L2(G))) = (K(L2(G))⊗̂T (L2(G)))∗,

where K(L2(G)) denotes the compact operators, and 〈Θr(µi),K ⊗ ρ〉 → 0 for any
K ∈ K(L2(G)) and ρ ∈ T (L2(G)) (again noting that m vanishes on C0(G)). But
the restriction R(Θr(µi)) does not tend point-weak∗ to 0 in Y since, for example,
R(Θr(µi))(1) converges to 1 in the weak∗ topology.

As an application of Theorem 4.5, we may obtain the following quantum group
analogue of Wendel’s result [31].

Theorem 4.7. Let G be a locally compact quantum group and let T be a complete
contraction in Crcb(L1(G)). Then the following are equivalent:

(1) T is a completely isometric linear isomorphism on L1(G);
(2) T has a completely contractive inverse in Crcb(L1(G));
(3) there exist a unitary operator u ∈ M̂ ′ and a complex number α with |α| = 1

such that Φ̃T (x) = αuxu∗ for all x ∈ B(L2(G)).

If, in addition, T is completely positive, then so is T−1. In this case, we have
Φ̃T (x) = uxu∗ for some u ∈ M̂ ′.

Proof. Let us first assume (1). Then T−1 is a complete isometry on L1(G). For
any f, g ∈ L1(G), there exists g̃ ∈ L1(G) such that g = T (g̃) and thus

T−1(f � g) = T−1(f � T (g̃)) = T−1(T (f � g̃)) = f � T−1(g).

This shows that T−1 is a completely contractive right centralizer contained in
Crcb(L1(G)). This proves (2).

If we have (2), then T has a completely contractive inverse T−1 in Crcb(L1(G)).
We can conclude from Theorem 4.5 that the corresponding map Φ̃T = E(ΦT ) is
a completely isometric linear isomorphism on B(L2(G)). It now follows from the
completely isometric version of Kadison’s non-commutative Banach–Stone theorem
(for instance, see [3, Theorem 1.1]) that there exists a unitary v ∈ B(L2(G)) and a
∗-isomorphism π on B(L2(G)) such that Φ̃T (x) = vπ(x) for all x ∈ B(L2(G)). By
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[26, Proposition 2.9.31], π is spatial, i.e. π = Adu for some unitary u ∈ B(L2(G)),
so that we have

Φ̃T (x) = vuxu∗

for all x ∈ B(L2(G)). Since Φ̃T ∈ CBσ,M
M̂

(B(L2(G))), we can conclude that v =
Φ̃T (1) ∈ M ∩ M̂ ′ = C1. Therefore, v = α1 with |α| = 1. Finally since Φ̃T is an
M̂ -bimodule map, we can conlcude that u ∈ M̂ ′. This proves (3).

(3) ⇒ (1) is obvious.

Remark 4.8. We wish to point out that the covariance condition (4.6) has played
a crucial role in the investigation of the intrinsic group of a Kac algebra (cf. De
Cannière’s work [4]). Indeed, [4, Theorem 2.3], one of the main results of the paper,
shows that the covariance property can be used to characterize precisely the ele-
ments of the intrinsic group of the dual Kac algebra among its unitaries. The
corresponding result for the intrinsic group of a locally compact quantum group,
as well as various other intriguing characterizations and properties of the latter in
terms of completely bounded multipliers, have been established very recently in
[13], using results from the present work (such as our Theorem 4.7 above).

Recall that we can identify L1(G) with a subalgebra ρ(L1(G)) in M r
cb(L1(G))

such that mr
ρ(f) = mr

f by (4.5). The next result shows that Θr(ρ(f)) = Θr
0(f).

Therefore, we can regard Θr as a natural extension of Θr
0.

Proposition 4.9. If f ∈ L1(G), then we have

Θr(ρ(f))(x) = (ι⊗ f)V (x⊗ 1)V ∗ = Θr
0(f)(x)

for all x ∈ B(L2(G)).

Proof. We first note that Φrρ(f)(x) = Θr
0(f)(x) for every x ∈M since

〈g,Θr
0(f)(x)〉 = 〈g ⊗ f, V (x⊗ 1)V ∗〉 = 〈g � f, x〉

= 〈mr
f (g), x〉 = 〈mr

ρ(f)(g), x〉 = 〈g,Φrρ(f)(x)〉

for all g ∈ L1(G). Now for x ∈ B(L2(G)), we obtain

V (Θr(ρ(f))(x) ⊗ 1)V ∗ = (ι⊗ Φrρ(f))V (x⊗ 1)V ∗ = (ι⊗ Θr
0(f))V (x⊗ 1)V ∗

= (ι⊗ ι⊗ f)V23V12(x⊗ 1 ⊗ 1)V ∗
12V

∗
23

= (ι⊗ ι⊗ f)V12V13(x⊗ 1 ⊗ 1)V ∗
13V

∗
12

= V (Θr
0(f)(x) ⊗ 1)V ∗.

Thus we get

Θr(ρ(f))(x) = (ι⊗ f)V (x⊗ 1)V ∗ = Θr
0(f)(x).

Finally, we would like to remark that we can, of course, analogously define a
completely bounded left multiplier of L1(G) (associated with the left fundamental
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unitary operator W ) to be an element b̂ ∈ M̂ such that b̂λ(f) ∈ λ(L1(G)) for all
f ∈ L1(G), and the induced map

ml
b̂

: f ∈ L1(G) → λ−1(b̂λ(f))

is completely bounded on L1(G). It is easy to show that ml
b̂

is actually a completely
bounded left centralizer on L1(G), and we have

ml
b̂1b̂2

= ml
b̂1

◦ ml
b̂2

for all b̂1 and b̂2 in M l
cb(L1(G)). If we let M l

cb(L1(G)) denote the algebra of all
completely bounded left multipliers of L1(G), then we can obtain the following
result.

Theorem 4.10. Let b̂ ∈ M̂ . Then b̂ is contained in M l
cb(L1(G)) if and only if there

exists a normal completely bounded map Φl
b̂

= (ml
b̂
)∗ on M such that

(Φl
b̂
⊗ ι)(W ) = (1 ⊗ b̂)W.

We have a completely isometric anti-isomorphism of completely contractive Banach
algebras as follows:

M l
cb(L1(G)) ∼= CBσ,M

M̂ ′ (B(L2(G))).

5. Pontryagin Duality as a Commutation Relation

It is a well-known mathematical principle that many natural operations stabilize
after two steps of iteration: negation in logic, dualizing of reflexive Banach spaces,
forming the Pontryagin dual of locally compact abelian groups, and taking the
commutant of a von Neumann algebra. The present section aims at showing that
the latter pair of operations displays much more than a mere analogy. Indeed, we
will prove that in the realm of locally compact quantum groups, Pontryagin duality
is a commutation relation, in the framework of our representation theoretical model.

The following constitutes a generalization and unification of [22, Theorems 5.1
and 5.2]. Here, for a set S ⊆ CB(B(L2(G))), we denote by Sc its commutant in
CB(B(L2(G))).

Theorem 5.1. Let G be a locally compact quantum group and let Ĝ denote the
dual quantum group. Then we have

Θ̂r(M r
cb(L1(Ĝ))) = Θr(M r

cb(L1(G)))c ∩ CBσM (B(L2(G))). (5.1)

Proof. Due to Theorem 4.5, we have the identifications

Θr : M r
cb(L1(G)) � CBσ,M

M̂
(B(L2(G)))

and

Θ̂r : M r
cb(L1(Ĝ)) � CBσ,M̂M (B(L2(G))).
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“⊆” We show that

CBσ,M̂M (B(L2(G))) ⊆ CBσ,M
M̂

(B(L2(G)))c ∩ CBσM (B(L2(G))).

Let Φ ∈ CBσ,M̂M (B(L2(G))) and Ψ ∈ CBσ,M
M̂

(B(L2(G))). Then, since both maps
are normal and the linear span of M̂M is weak∗-dense in B(L2(G)) by our
Proposition 2.2, we only need to show that ΦΨ(x̂y) = ΨΦ(x̂y) for all x̂ ∈ M̂ and
y ∈ M . On the one hand, since Ψ is an M̂ -bimodule map and leaves M invariant,
and finally using the M -bimodule property of Φ, we obtain

ΦΨ(x̂y) = Φ(x̂Ψ(y)) = Φ(x̂)Ψ(y).

On the other hand, since Φ is an M -bimodule map and leaves M̂ invariant, and
using the M̂ -bimodule property of Ψ, we get analogously:

ΨΦ(x̂y) = Ψ(Φ(x̂)y) = Φ(x̂)Ψ(y),

which yields the desired equality.
“⊇” The argument is similar to the one given in the proof of [22, Theorem 5.1].
Let Φ ∈ CBσ,M

M̂
(B(L2(G)))c ∩CBσM (B(L2(G))). It sufficies to show that Φ leaves

M̂ invariant. Since ρ(L1(G)) is weak* dense in M̂ ′, it sufficies to show that

ρ(f)Φ(x̂) = Φ(x̂)ρ(f)

for all f ∈ L1(G) = M∗ and x̂ ∈ M̂ . Assume that {ei} is an orthonormal basis
for L2(G). Then we let ωij = θ∗ei

θej ∈ T (L2(G)) and fij = ωij |M ∈ L1(G). Since
Θr(fij) is an M̂ -bimodule map, we have

Φ(Θr(fij)(x̂)) = 〈fij , 1〉Φ(x̂).

(Note that this is precisely an abstract version of [22, Eq. (5.2)].) Therefore, we
obtain

〈Φ(x̂) ⊗ 1, ι⊗ fij〉 = 〈fij , 1〉Φ(x̂) = Φ(Θr(fij)(x̂)) = Θr(fij)(Φ(x̂))

= 〈V (Φ(x̂) ⊗ 1)V ∗, ι⊗ fij〉.

This shows that

Φ(x̂) ⊗ 1 = V (Φ(x̂) ⊗ 1)V ∗

or equivalently,

(Φ(x̂) ⊗ 1)V = V (Φ(x̂) ⊗ 1).

For any f ∈ L1(G), we apply ι⊗ f to the above identity and get

Φ(x̂)ρ(f) = ρ(f)Φ(x̂).
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This shows that Φ(x̂) ∈ M̂ and thus Φ is a normal completely map contained in
CBσ,M̂M (B(L2(G))) = Θ̂r(M r

cb(L1(Ĝ))). This completes the proof.

Remark 5.2. (i) The following question is crucial for the interpretation of Theo-
rem 5.1 beyond the realm of compact quantum groups G (for which M r

cb(L1(Ĝ)) =
ρ(L1(Ĝ))): For quantum groups, does M r

cb(L1(G)) determine G, i.e. if G1 and
G2 are locally compact quantum groups such that M r

cb(L1(G1)) and M r
cb(L1(G2))

are completely isometrically algebra isomorphic, is the same true for L1(G1) and
L1(G2)? If G is a locally compact group, this is true for the measure algebra
M(G) = M r

cb(L1(Ga)), and when G is amenable, this is also true for the com-
pletely bounded (Herg–Schur) multiplier algebra McbA(G) = M r

cb(L1(Ĝa)) since,
in this case, McbA(G) is equal to the Fourier–Stieltjes algebra B(G). So it would
be interesting to know whether this question has a positive answer for co-amenable
locally compact quantum groups.

(ii) Theorem 5.1, together with the above remark (i), also prompts the question

whether the quantum group version ˆ̂
G = G of the classical Pontryagin duality

theorem (via the dual quantum group Ĝ) may translate, on the representation
side, into the bicommutant result Θr(M r

cb(L1(G)))cc = Θr(M r
cb(L1(G))), where

commutants are taken in CB(B(L2(G))).

Corollary 5.3. Let G be a locally compact quantum group with dual Ĝ. Then we
have the bicommutant result

Θr(M r
cb(L1(G)))cc = Θr(M r

cb(L1(G))),

or equivalently,

CBσ,M
M̂

(B(L2(G)))cc = CBσ,M
M̂

(B(L2(G))).

Proof. This follows in the same way as [22, Theorem 5.4], by using the identifi-
cation

Θr(M r
cb(L1(G))) = CBσ,M

M̂
(B(L2(G)))

and the Effros–Exel/Hofmeier–Wittstock bicommutant theorem ([6, Sec. 3], [11,
Proposition 3.1 and Remark 4.3])

CBσN (B(H))cc = CBσN (B(H))

which holds for every von Neumann subalgebra N ⊆ B(H) in standard form, where
H is a (separable) Hilbert space; the extension to arbitrary Hilbert spaces follows
from [17, Sec. 2].
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