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Abstract— This paper considers consensus problems with
delayed noisy measurements, and stochastic approximation is
used to achieve mean square consensus. For stochastic approx-
imation based consensus algorithms with switching topologies,
the existing convergence analysis heavily relies on quadratic
Lyapunov functions, whose existence may be difficult to guar-
antee for switching digraphs. The main contribution of this
paper is to introduce a new approach for proving convergence.
This is achieved by obtaining ergodicity results for backward
products of degenerating stochastic matrices via a discrete time
dynamical system approach. Our approach does not require
the double stochasticity condition typically assumed for the
existence of a quadratic Lyapunov function.

I. INTRODUCTION

In the past decade consensus problems and various closely
related formulations have been intensively investigated for
multi-agent systems [13], [19], [22]. A comprehensive survey
can be found in [18], [24]. In the recent years, consensus
algorithms with imperfect information exchange have at-
tracted increasing attention, addressing measurement noise
or quantization effect [2], [23], [30], [3], [25], [1], [4], [15],
[23], [25], [30]. The work [28] made early effort introducing
stochastic gradient based consensus algorithms.

In consensus models with noisy measurements, stochastic
approximation with decreasing step sizes may be applied
such that each agent can extract state information from
its neighbors while reducing the detrimental noise effect
[11], [12], [14], [16], [21], [27]. A popular tool for proving
convergence is to use quadratic Lyapunov functions. For
fixed network topologies, the existence of such functions
is guaranteed. When the network topologies experience
switches, the quadratic Lyapunov function approach is still
applicable in balanced graph models which give doubly
stochastic matrices in averaging [19]. In undirected graphs,
doubly stochastic weight matrices may be easily constructed
by using the well known Metropolis weights [30]. Distributed
iterative algorithms have been developed for constructing
doubly stochastic matrices over digraphs [8].

However, in randomly varying digraph models it is dif-
ficult to construct doubly stochastic matrices for averaging
unless global information is available about the instantaneous
network topology. Iterative algorithms as those in [8] are not
applicable since the network condition may have changed
before the iterates can converge. It is of practical importance
to consider models without the double stochasticity property.
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In this paper, we use general time-varying weight matrices
for stochastic approximation in noisy models and also deal
with random delays in the reception of signals. This problem
formulation presents new challenges in analysis. Firstly, the
traditional methodologies in stochastic approximation are not
applicable since the coefficient matrix has no asymptotic
stability and changes too rapidly. Secondly, the Lyapunov
approach is hardly applicable. When the coefficient matrix at
each step is doubly stochastic, one may construct a quadratic
Lyapunov function via the so called disagreement function
[19]. From the point of view of switched systems, the
disagreement function essentially defines multiple Lyapunov
functions decreasing along the trajectory of the iteration.
Now for general coefficient matrices, the use of quadratic
Lyapunov functions is no longer feasible. For general nonex-
istence results on quadratic Lyapunov functions, see [20].

Our convergence analysis relies on the backward products
of degenerating stochastic matrices forming a sequence of in-
homogeneous stochastic matrices. For analyzing the products
of in-homogeneous stochastic matrices from a finite collec-
tion, Wolfowitz’s ergodicity theorem [29], [13] and paracon-
traction [5], [6], [7] are well known powerful techniques.
However, they cannot be applied to our stochastic approxi-
mation model due to the degenerating nature of the matrices.
In this paper, we will develop a dynamical system approach
to examine the backward products of degenerating stochastic
matrices and establish their ergodicity, which further ensures
the convergence of the stochastic approximation algorithm
for consensus. Our approach can deal with both synchronous
and asynchronous algorithms.

Due to limited space, this paper only describes the main
steps to prove the ergodicity and consensus theorems, and
more detailed analysis is available in [9].

The paper is organized as follows. Section II formulates
the stochastic consensus problem. Section III shows a neces-
sary and sufficient condition for mean square consensus via
ergodic backward products. Section IV introduces the notion
of compatible matrices and Section V proves ergodicity of
degenerating stochastic matrices. Section VI shows mean
square consensus. Section VII presents simulation results and
Section VIII concludes the paper.

II. THE STOCHASTIC CONSENSUS ALGORITHM

We introduce some standard preliminaries on graph mod-
eling of the network topology. A directed graph (digraph)
G = (N ,E ) consists of a set of nodes N = {1, . . . ,n} and
a set of directed edges E . A directed edge (simply called an
edge) is denoted by an ordered pair (i, j) ∈N ×N , where



i 6= j. A directed path (from node i1 to node il) consists of
a sequence of nodes i1, . . . , il , l ≥ 2, such that (ik, ik+1) ∈ E .
The digraph G is strongly connected if from any node to
any other node, there exists a directed path. A directed tree
is a digraph where each node i, except the root, has exactly
one parent node j so that ( j, i) ∈ E . We call G′ = (N ′,E ′)
a subgraph of G if N ′ ⊂N and E ′ ⊂ E . The digraph G is
said to contain a spanning tree if there exists a directed tree
Gtr = (N ,Etr) as a subgraph of G. The adjacency matrix
of G is an n× n matrix AG = (ai j)1≤i, j≤n, where ai j = 1 if
(i, j)∈ E , and ai j = 0 otherwise. If G is an undirected graph,
each edge is denoted as an unordered pair (i, j), where i 6= j.

The dynamic network topology to specify the signal recep-
tion is modeled by a sequence of digraphs {Gt = (N ,Et), t ≥
0}, where N = {1, . . . ,n} and Et randomly changes with
time. The adjacency matrix AGt is a matrix-valued random
variable and completely determines Et . If ( j, i) ∈ Et , node i
receives information from node j which is called a neighbor
of node i. The neighbor set of node i is Ni,t = { j|( j, i)∈ Et}.

We make some convention about notation. The node index
is often used as a superscript but not an exponent in different
variables (xi

t , zi
t , etc.). For a matrix M, the element at the

ith row and the jth column is called the (i, j)-th element
and denoted by M(i, j). For a vector or matrix M, denote
the Frobenius norm |M| = [Tr(MT M)]1/2. We use 1k ∈ Rk

to denote a column vector of k ones. For column vectors
Z1, . . . ,Zl , [Z1; . . . ;Zl ] denotes the column vector obtained by
vertical concatenation of the l vectors. We use C to denote a
generic positive constant which may vary at different places.

A. The Stochastic Approximation Algorithm

The underlying probability space is denoted by (Ω,F ,P),
corresponding to the sample space, the collection of all
events, and the probability measure, respectively. At time
t ∈ {0,1,2, . . .}, node i is associated with a real-valued state
xi

t . Define the state vector

Xt = [x1
t , . . . ,x

n
t ]

T , t ≥ 0.

At time t, if Ni,t 6= /0 (the empty set), node i receives possibly
outdated information from its neighbors modeled by

yik
t = xk

t−dik
t

+wik
t , k ∈Ni,t , (1)

where wik
t is the noise and dik

t ≥ 0 is an integer-valued
random delay. Since the system starts at t = 0, the implicit
requirement for the neighbor set is that

k ∈Ni,t implies t−dik
t ≥ 0. (2)

Each node uses its own state and its noisy measure-
ments to form a weighted average. Define the matrix Bt =
(bik(t))1≤i,k≤n as follows. If Ni,t = /0, define

bik(t) = 0 for all k ∈N . (3)

If Ni,t 6= /0, define




bik(t) ∈ [b, b], if k ∈Ni,t
bik(t) = 0, if k /∈Ni,t ∪{i}
bii(t) =−∑k∈Ni,t bik(t),

(4)

where 0 < b≤ b < ∞ are two deterministic constants. Since
the sequence {Gt , t ≥ 0} changes randomly, {Bt , t ≥ 0} is a
matrix-valued random process.

At time t ≥ 0, if Ni,t = /0, set xi
t+1 ≡ xi

t . If Ni,t 6= /0, node
i updates its state by the rule

xi
t+1 = [1+atbii(t)]xi

t +at ∑
k∈Ni,t

bik(t)yik
t , t ≥ 0, (5)

where {at , t ≥ 0} is a sequence of positive step sizes. We
call I +atBt the weight matrix. Since all nodes update their
state simultaneously, (5) is a synchronous algorithm.

Denote the maximal set of communication links Emax =
{(k, i)|supt≥0 P((k, i) ∈ Et) > 0}. For convenience of statis-
tical modeling, we make the convention: wik

t and dik
t are

defined for all (k, i) ∈ Emax. If (k, i) does not appear in Et
so that (1) does not physically occur, we still introduce wik

t
and dik

t as dummy random variables. If (k, i) /∈ Et , we set
dik

t = 0. Let {wik
t |(k, i) ∈ Emax} be listed by a fixed ordering

of (k, i) to obtain a noise vector Wt of n1 dimension.
Definition 1: The n nodes are said to achieve mean square

consensus if E|xi
t |2 < ∞, t ≥ 0, 1 ≤ i ≤ n, and there exists

a random variable x∗ such that limt→∞ E|xi
t − x∗|2 = 0 for

1≤ i≤ n. ♦
B. Main Assumptions

(A1) The deterministic sequence {at , t ≥ 0} satisfies

a0 > 0, αt−γ ≤ at ≤ β t−γ , t ≥ 1, (6)

where γ ∈ (1/2, 1] and 0 < α ≤ β < ∞. ♦
So (A1) implies ∑∞

t=0 at = ∞ and ∑∞
t=0 a2

t < ∞.
For 0 ≤ t1 < t2, define the digraph G[t1,t2) =

(N ,∪t1≤t<t2Et), which is called the union of the digraphs
{Gt |t1 ≤ t < t2}. Clearly, G[t1,t2) depends on the sample ω .

(A2) There exist integer-valued random variables 0≡ T0 <
T1 < .. . < Tl−1 < Tl < .. . such that after excluding a null set
N0 ⊂Ω (i.e., P(N0) = 0), the two conditions hold:

(i) G[Tl ,Tl+1) is strongly connected for l ≥ 0 and ω ∈Ω\N0.
(ii) α2 := supl≥1(Tl −Tl−1) < ∞, for ω ∈Ω\N0. ♦
(A3) {Wt , t ≥ 0} is a sequence of independent random vec-

tors of zero mean and is independent of {(Bt ,AGt ,{dik
t |(k, i)∈

Emax}), t ≥ 0}, where 0≤ dik
t ≤ d∗ for a fixed integer d∗ ≥ 0.

In addition, E|X0|2 < ∞ and supt≥0 E|Wt |2 < ∞. ♦
For leader following we introduce another connectivity

condition.
(A2′) There is a fixed leader node iL which has no neighbor

in each Gt . There exist integer-valued random variables 0≡
T0 < T1 < .. . < Tl < .. . such that after excluding a null set
N0 ⊂ Ω, G[Tl ,Tl+1) contains a spanning tree with root iL for
l ≥ 0 and ω ∈Ω\N0. In addition, (A2)-(ii) is satisfied. ♦
C. A Vector Form of the Algorithm

Denote the set of n×n random matrices

Bd,t = (Bd,t(i,k))1≤i,k≤n, d = 0,1, . . . ,d∗.

For their diagonal elements, we take B0,t(i, i) = bii(t) and
Bd,t(i, i) = 0, d = 1, . . . ,d∗, for all i. For d = 0,1, . . . ,d∗, the



off-diagonal element Bd,t(i,k) is nonzero and further taken
as bik(t) if and only if bik(t) > 0 and dik

t = d. Denote

B0
t = [B0,t ,B1,t , . . . ,Bd∗,t ]. (7)

The ith row of B0
t contains the same set of nonzero elements

as the ith row of Bt does. Due to (2), if t < d∗, we necessarily
have Bd,t = 0 for all d = t +1, . . . ,d∗.

We write (5) in the equivalent form

Xt+1 = Xt +atB0
t [Xt ;Xt−1; . . . ;Xt−d∗ ]+atDtWt , t ≥ 0, (8)

where Dt is an n×n1 random coefficient matrix determined
by Bt and we set Xt ≡ 0 for −d∗ ≤ t < 0. If d∗ = 0, (8)
reduces to

Xt+1 = (I +atBt)Xt +atDtWt , t ≥ 0.

Denote the n(d∗+1)×n(d∗+1) matrix

U =




I 0 0 · · · 0
I 0 0 · · · 0
0 I 0 · · · 0
...

...
. . .

...
...

0 0 . . . I 0




, (9)

where each identity matrix is n×n, and denote

Bt =
[

B0
t

0nd∗×n(d∗+1)

]
, Dt =

[
Dt

0nd∗×n1

]
. (10)

It is clear that Bt is determined by (Bt ,{dik
t |(k, i) ∈ Emax}).

Denote Xt = [Xt ;Xt−1; . . . ;Xt−d∗ ] ∈ Rn(d∗+1). We have

Xt+1 = (U+atBt)Xt +atDtWt , t ≥ 0, (11)

where Xt ≡ 0 for −d∗ ≤ t < 0.
If at → 0 as t → ∞, for some t0(ω) depending on ω ∈Ω,

{U+atBt(ω), t ≥ t0(ω)} is a sequence of stochastic matrices
converging to the 0-1 stochastic matrix U and will be called
a sequence of degenerating stochastic matrices.

III. A NECESSARY AND SUFFICIENT CONDITION FOR
CONSENSUS

We use a general algorithm to reveal a fundamental
relationship between mean square consensus and ergodicity
of backward matrix products. Consider the system

Yt+1 = AtYt +HtVt , t ≥ 0, (12)

where Yt ∈ Rm1 denotes the states of m1 agents, Vt ∈ Rm2

is the noise vector, and the initial condition is Y0. Here
{At , t ≥ 0} and {Ht , t ≥ 0} are two sequences of random
matrices of compatible dimensions. For each fixed ω , At(ω)
is a stochastic matrix for all t ≥ 0. The model (12) includes
(11) as a special case if the coefficient matrices of Xt in (11)
are nonnegative for all t ≥ 0.

A. Ergodicity of Backward Products

Let {Ãt , t ≥ 0} be a sequence of deterministic nonnegative
matrices, where each Ãt is a stochastic matrix. Define the
so-called backward product Φt,s = Ãt−1 . . . Ãs for t ≥ s ≥ 0,
where Φs,s := I. The product Φt,s is still a stochastic matrix.
Let Φt,s(i, j) denote its (i, j)-th element.

Definition 2: [26] We say weak ergodicity holds for back-
ward products of the sequence {Ãt , t ≥ 0} of stochastic
matrices if

lim
t→∞

|Φt,s(i1, j)−Φt,s(i2, j)|= 0

for any given s ≥ 0 and i1, i2, j. If in addition to weak
ergodicity, Φt,s(i, j) converges as t → ∞, for any s, i, j, we
say strong ergodicity holds. ♦

By [26, p. 154, Theorem 4.17], weak and strong ergodicity
are equivalent for backward products of any sequences of
stochastic matrices. Hence, in the following we only speak
of ergodicity of backward products.

B. The Necessary and Sufficient Condition for Consensus

For the theorem below, we run algorithm (12) with any
initial time-state pair (t0,Yt0). Denote Yt = [Y 1

t , . . . ,Y m1
t ]T and

Ψt,s = At−1 . . .As for t ≥ s, where Ψs,s := I.
Theorem 3: [9] Assume
(i) {Vt , t ≥ 0} is a sequence of random vectors of zero

mean, independent of {(At ,Ht), t ≥ 0};
(ii) ∑∞

t=0 E|Ht |2E|Vt |2 < ∞;
(iii) there exists a sequence of nonnegative numbers

{φk,k ≥ 0} such that

|E[VkV T
k′ ]| ≤ φ|k−k′|[E|Vk|2E|Vk′ |2]1/2,

∞

∑
k=0

φk < ∞.

Then (12) ensures mean square consensus for any initial
time-state pair (t0,Yt0) with E|Yt0 |2 < ∞ if and only if {At , t ≥
0} has ergodic backward products with probability one. ¤

Remark: If {Vt , t ≥ 0} are independent with EVt = 0 and
E|Vt |2 < ∞, (iii) holds. ♦

IV. COMPATIBLE NONNEGATIVE MATRICES

This section develops some basic tools for analyzing se-
quences of degenerating stochastic matrices. To avoid intro-
ducing too many variables, the vectors Xt and Xt appearing
in Section II will be reused in new models.

A. Compatible Matrices

Let {Ãt , t ≥ 0} be n(d∗+1)×n(d∗+1) deterministic non-
negative matrices. Consider the weighted averaging model

Xt+1 = ÃtXt , t ≥ 0, (13)

where X0 is deterministic and Ãt is a stochastic matrix.
Denote the partition

Ãt =




Ã00,t . . . Ã0d∗,t
...

. . .
...

Ãd∗0,t . . . Ãd∗d∗,t


 ,



where each matrix Ãik,t is n×n. Let Ãt(i, j) be the (i, j)-th
element of Ãt .

We impose some structural restrictions on {Ãt , t ≥ 0},
which are motivated by backward products of the coeffi-
cient matrices in (11). Roughly, each Ãd0,t , 0 ≤ d ≤ d∗, is
an identity matrix subject to small perturbations. So after
excluding the diagonal elements of {Ãd0,t ,0 ≤ d ≤ d∗}, all
the remaining elements of Ãt are necessarily small. However,
they are important in affecting the asymptotic behavior of the
system (13). For further analysis, we isolate a set of relatively
large elements in the first n rows of Ãt excluding the diagonal
elements of Ã00,t by associating Ãt with a digraph of n nodes.
We introduce the following definition for both square and
non-square matrices.

Definition 4: Let {Ãt , t ≥ 0} be a sequence of n(d∗ +
1)×n(d∗+1) stochastic matrices, {dt , t ≥ 0} be a sequence
of nonnegative numbers converging to zero as t → ∞, and
{G̃t = (N , Ẽt), t ≥ 0} be a sequence of digraphs. If there
exist constants tc and 0 < c≤ c such that for all t ≥ tc,

i) the first n rows of Ãt satisfy

Ãt(i, j)≤ cdt , ∀1≤ i≤ n, 1≤ j ≤ n(d∗+1), j 6= i,

(14)

max
0≤d≤d∗

Ãt(i, j +dn)≥ cdt , ∀( j, i) ∈ Ẽt ; (15)

ii) the (i, i)-th element of Ãd0,t satisfies

Ãd0,t(i, i)≥ 1− c̄dt , ∀1≤ i≤ n, 1≤ d ≤ d∗, (16)

then {Ãt , t ≥ 0} is said to be (dt)-compatible with {G̃t , t ≥
0}. Similarly, if {Āt , t ≥ 0} is a sequence of n× n(d∗+ 1)
nonnegative matrices with unit row sums and if (14)-(15)
hold for the corresponding elements Āt(i, j) and Āt(i, j+dn),
{Āt , t ≥ 0} is said to be (dt)-compatible with {G̃t , t ≥ 0}. We
may further define (dt)-compatibility with any positive initial
time s0 in an obvious manner. ♦

By utilizing {G̃t , t ≥ 0} in this manner, we may obtain use-
ful information concerning the interaction of the components
of Xt by the connectivity properties of the digraphs. The
class of compatible nonnegative matrices will serve as the
basis for analyzing general degenerating stochastic matrices
arising in stochastic approximation.

If {Ãt , t ≥ 0} is (dt)-compatible with {G̃t , t ≥ 0}, this
property still holds if dt is replaced by cdt for some c > 0. At
some places where it is unnecessary to explicitly indicate dt ,
we simply say that {Ãt , t ≥ 0} is compatible with {G̃t , t ≥ 0}.

Example: Let {Gt(ω), t ≥ 0} be given in Section II and
{Bt(ω), t ≥ 0} be specified by (3)-(4). By using (7), define
the n× n(d∗ + 1) matrices Mt(ω) = [In,0n×nd∗ ] + atB0

t (ω),
t ≥ 0, where {at , t ≥ 0} satisfies (6). Select t0 such that Mt(ω)
is a nonnegative matrix for t ≥ t0. It may be verified that
{Mt(ω), t ≥ t0} is (at)-compatible with {Gt(ω), t ≥ t0}. ♦

The following lemma holds since Ãt has unit row sums.
Lemma 5: Assume that {Ãt , t ≥ 0} in (13) is (dt)-

compatible with {G̃t , t ≥ 0}. We have

Ãt(i, i)≥ 1− [n(d∗+1)−1]c̄dt ,

Ãt(i+nd, j)≤ c̄dt , 1≤ j ≤ n(d∗+1), j 6= i,

where t ≥ tc for some constant tc, 1≤ i≤ n and 1≤ d≤ d∗. ¤
To distinguish from the notation in (11), we denote

Xt = [Xt ;X (−1)
t ; . . . ;X (−d∗)

t ] = [x1
t , . . . ,x

n(d∗+1)
t ]T (17)

for (13), where Xt and X (−d)
t , 1≤ d ≤ d∗, are n dimensional.

If {Ãt , t ≥ 0} is (dt)-compatible with {G̃t , t ≥ 0}, for conve-
nience of exposition we call Xt the states of the n nodes in G̃t

and may think of X (−d)
t , 1≤ d ≤ d∗, as d∗ copies of Xt with

one step delay and different perturbations by the magnitude
of dt . We introduce the assumption for (13).

(H1) (i) {Ãt , t ≥ 0} is (at)-compatible with a sequence
{G̃t , t ≥ 0} of digraphs, where {at , t ≥ 0} satisfies (A1); (ii)
each G̃t , t ≥ 0, is strongly connected. ♦
B. State Reordering and Mutual Attraction of Trajectories

A direct convergence analysis of Xt in (13) is quite dif-
ficult since its components undergo very complex evolution.
We construct a new vector Zt based on Xt = [x1

t , . . . ,x
n
t ]T . Let

the n entries of Xt be listed in descending order

xi1
t ≥ xi2

t ≥ . . .≥ xin
t ,

where {i1, . . . , in} is a permutation of {1, . . . ,n} and in
general changes with time. We interpret xi

t as the state of
node i, 1≤ i≤ n. Define

Zt = [z1
t , . . . ,z

n
t ]

T : = [xi1
t , . . . ,xin

t ]T . (18)

Define the n scalar sequences

{zk
t , t ≥ 0}, 1≤ k ≤ n. (19)

We call {zk
t , t ≥ 0} the level-k trajectory. By Lemma 5, we

may estimate the difference between Xt and X (−d)
t to yield

the next Lemma.
Lemma 6: Let Xt = [Xt ;X (−1)

t ; . . . ;X (−d∗)
t ] be given by

(13), and assume (H1)-(i). Then for some fixed constant c̃,

max
1≤d≤d∗

|Xt −X (−d)
t | ≤ c̃at−1, t ≥ 1. (20)

¤
Lemma 7: Assume (H1)-(i) and let Zt be defined by (13)

and (18). Then both {z1
t , t ≥ 0} and {zn

t , t ≥ 0} converge. ¤
The asymptotic behavior of the other sequences {zk

t , t ≥ 0},
2 ≤ k ≤ n− 1, is less obvious. The following theorem is a
key result for establishing ergodicity of backward products
of degenerating stochastic matrices. The basic idea of its
proof is to use induction. First, Lemma 7 shows that the
level-1 trajectory converges. Next, we show that each level-
(k +1) trajectory converges to the same limit as the level-k
trajectory. Then by Lemma 6, the convergence of Xt follows.

Theorem 8: [9] Let (Xt ,Zt) be defined by (13) and (18)
with any initial condition Xt0 , t0 ≥ 0. Assume (H1). Then
there exists a number c depending on Xt0 such that

(i) limt→∞ Zt = c1n;
(ii) limt→∞ Xt = c1n(d∗+1). ¤

V. ERGODICITY OF DEGENERATING STOCHASTIC
MATRICES

Throughout subsections V-A and V-B, all matrices and
graphs involved are deterministic.



A. Ergodicity of Backward Products
For the sequence {Ãt , t ≥ 0} of stochastic matrices speci-

fied in (13), define the backward product Φt,s = Ãt−1 . . . Ãs,
t ≥ s≥ 0, where Φs,s := I. The following ergodicity theorem
is an easy consequence of Theorem 8.

Theorem 9: [9] Assuming (H1), ergodicity holds for the
backward products of {Ãt , t ≥ 0}. ¤
B. Ergodicity over Jointly Strongly Connected Digraphs

Let {Āt , t ≥ 0} be a sequence of n×n(d∗+1) nonnegative
matrices with unit row sums, and let {G̃t = (N , Ẽt), t ≥ 0} be
a sequence of digraphs. Define the square stochastic matrix

Ãt =
[

Āt
Ind∗ 0nd∗×n

]
. (21)

To analyze the backward products of {Ãt , t ≥ 0}, we intro-
duce the following assumption for non-square nonnegative
matrices as the counterpart of (H1)-(i).

(H2) {Āt , t ≥ 0} is (at)-compatible with {G̃t , t ≥ 0}, where
{at , t ≥ 0} satisfies (A1). ♦

Denote Mt,s = Ãt+s−1 . . . Ãt , s≥ 1, in the form

Mt,s =




Mt,s
00 . . . Mt,s

0d∗
...

. . .
...

Mt,s
d∗0 . . . Mt,s

d∗d∗


 ,

where each Mt,s
i j , 0≤ i, j ≤ d∗, is an n×n matrix.

In the lemma below, we follow the rule in Section II to
define the union of digraphs.

Lemma 10: Assume (H2). Let h≥max{d∗,1} be a fixed
integer and denote G̃[t,t+s) = (N , Ẽ[t,t+s)) for t ≥ 0 and
max{d∗,1} ≤ s ≤ h. Then there exist constants t ′c ≥ 1 and
0 < c′ ≤ c′, all independent of (t,s), such that for all t ≥ t ′c,

(i) the first n rows of Mt,s satisfy

Mt,s(i, j)≤ c′t−γ , ∀1≤ i≤ n,

1≤ j ≤ n(d∗+1), j 6= i, (22)

max
0≤d≤d∗

Mt,s(i, j +dn)≥ c′t−γ , ∀( j, i) ∈ Ẽ[t,t+s); (23)

(ii) there exists a fixed constant c0 independent of (t,s)
such that |Mt,s

d0− I| ≤ c0t−γ for 1≤ d ≤ d∗. ¤
Lemma 10 may be proved by matrix product estimates. It

further implies the following compatibility result.
Lemma 11: Assume that (H2) holds and that there exists

a sequence of integers 0 =: τ0 < τ1 < .. . such that d∗+1≤
infi≥0(τi+1−τi)≤ supi≥0(τi+1−τi) < ∞. Then {Ât , t ≥ 0} is
(at)-compatible with {Ĝt , t ≥ 0}, where Ât = Ãτt+1−1 . . . Ãτt

and Ĝt = G̃[τt ,τt+1). ¤
We state the ergodicity result for stochastic matrices as-

sociated with jointly strongly connected digraphs. The basic
idea of its proof is to use {Ãt , t ≥ 0} to form a sequence
of products on disjoint bounded time intervals, and next use
Lemma 11 to check the compatibility condition and finally
apply Theorem 9.

Theorem 12: [9] Assume (H2). In addition, there exists a
sequence 0 =: τ0 < τ1 < .. . such that (i) supi≥0(τi+1−τi) < ∞
and (ii) G̃[τi,τi+1) is strongly connected for each i≥ 0. Then
ergodicity holds for the backward products of {Ãt , t ≥ 0}. ¤

C. Application to Random Networks

By applying Theorem 12 to sample paths, we obtain the
following corollary.

Corollary 13: Assume (i) {Bt , t ≥ 1} is given by (3)-(4)
and (A1)-(A2) hold; (ii) s0(ω) is an integer such that each
At = U + atBt , t ≥ s0(ω), is a stochastic matrix. For each
ω ∈ Ω\N0, ergodicity holds for the backward products of
{At(ω), t ≥ s0(ω)}. ¤

VI. MEAN SQUARE CONSENSUS

Denote At = U+atBt . Theorem 14 below may be proved
by using Theorem 3 and Corollary 13.

Theorem 14: [9] Under (A1)-(A3), mean square consen-
sus holds for (5), i.e., limt→∞ E|xi

t −x∗|2 = 0 for some x∗. ¤
For leader following, convergence may be proved by a

similar ergodicity approach.
Corollary 15: [9] In Theorem 14, if (A2) is replaced by

(A2′) while other assumptions still hold, then limt→∞ E|xi
t −

xiL
0 |2 = 0 for all i. ¤

Remark: Theorem 14 and Corollary 15 may be generalized
to correlated noises by using Theorem 3. ♦

Remark: If (1) is replaced by yik
t = (xk

s + wik
s )|s=t−dik

t
,

Theorem 14 and Corollary 15 still hold. ♦
A. Generalization to Asynchronous Algorithms

We describe an asynchronous version of the consensus
algorithm. Each node maintains a counter θ i

t for generating
a step size. Denote θt = [θ 1

t , . . . ,θ n
t ].

(AU) Asynchronous update:

θ i
t =

t

∑
s=1

1{|Ni,s|>0}, i ∈N , t ≥ 1, (24)

and θ i
0 = 0, where |Ni,s| is the number of neighbors of node

i at time s. So (24) means that the node increases its counter
by one whenever it receives signals from its neighbors.

The algorithm for case (AU) is specified as follows:

xi
t+1 = [1+aθ i

t
bii(t)]xi

t +aθ i
t ∑

k∈Ni,t

bik(t)yik
t , t ≥ 0, (25)

which is essentially driven by event times, i.e., the moments
of receiving signals. Once initialized, this algorithm may
be implemented without synchronized time slots although
we use the pre-specified discrete times 0,1,2, . . . to describe
(25). By combining (A1)-(A3) with some mild additional
assumptions (mainly a moment condition for supl≥1 |Tl+1−
Tl |), we may use the ergodicity approach to show mean
square consensus for (25); see [9] for details.

VII. SIMULATION

Consider an undirected graph G of 4 nodes shown in Fig.
1. At time t ≥ 0, node i transmits with probability pi,t with the
exception that if up to time t−1 node i has not transmitted
for Li consecutive steps, it guarantees a transmission at t.
The dependence of pi,t on time indicates non-stationarity of
network switches. The delays are specified by d12

t = d21
t =

0, d23
t = d32

t = 1 and d24
t = d42

t = 2. The real-time network
topology is determined according to signal receptions.
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Fig. 1. The network.
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Fig. 2. Convergence of algorithm (5).

We take p1,t = 1/(2 + 2sin2(0.05t)), [p2,t , p3,t , p4,t ] ≡
[0.3,0.4,0.2], bik(t) = 1 if k ∈ Ni,t , at = (t + 4)−0.7, t ≥ 0,
[L1,L2,L3,L4] = [10,8,6,10], and X0 = [3,1,4,2]T . The i.i.d.
Gaussian measurement noises have zero mean and variance
0.04. Fig. 2 shows the convergence of the states for algorithm
(5).

VIII. CONCLUSION

We considered stochastic approximation for consensus
seeking with delayed measurements in dynamic noisy envi-
ronments. This paper developed a new approach by studying
ergodicity of degenerating stochastic matrices and obtained
convergence results without the usual double stochasticity
condition. In future work, it will be of interest to further relax
the bounded time interval condition for joint connectivity. A
typical situation is Markovian switching networks [17], [10],
where the bounded time interval condition in general fails.
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[1] D. Acemoglu, A. Nedić, and A. Ozdaglar. Convergence of rule-of-
thumb learning rules in social networks. Proc. the 47th IEEE CDC,
Cancun, Mexico, pp. 1714-1720, Dec. 2008.

[2] T. C. Aysal and K. E. Barner. Convergence of consensus models with
stochastic disturbances. IEEE Trans. Info. Theory, vol. 56, no. 8, pp.
4101-4113, 2010.

[3] R. Carli, F. Fagnani, P. Frasca, T. Taylor, and S. Zampieri. Average
consensus on networks with transmission noise or quantization. Proc.
European Control Conf., Kos, Greece, pp. 1852-1857, July 2007.

[4] F. Cucker and E. Mordecki. Flocking in noisy environments. J. Math.
Pures Appl., vol. 89, no. 3, pp. 278-296, 2008.

[5] L. Elsner, I. Koltracht, and M. Neumann. On the convergence of
asynchronous paracontractions with applications to tomographic re-
construction from incomplete data. Linear Algebra and Appl., vol.
130, pp. 65-82, 1990.

[6] L. Elsner, I. Koltracht, and M. Neumann. Convergence of sequential
and asynchronous nonlinear paracontractions. Numer. Math., vol. 62,
pp. 305-319, 1992.

[7] L. Fang and P. J. Antsaklis. Asynchronous consensus protocols using
nonlinear paracontraction theory. IEEE Trans. Autom. Control, vol. 53,
no. 10, pp. 2351-2355, Nov. 2008.

[8] B. Gharesifard and J. Cortés. Distributed strategies for generating
weight-balanced and doubly stochastic digraphs, submitted to SIAM J.
Contr. Optim., Oct. 2009. Available at http://arxiv.org/abs/0911.0232.

[9] M. Huang. Stochastic approximation for consensus: a new approach
via ergodic backward products. Preprint, 2010.

[10] M. Huang, S. Dey, G. N. Nair, and J. H. Manton. Stochastic con-
sensus over noisy networks with Markovian and arbitrary switches.
Automatica, vol. 46, no. 10, pp. 1571-1583, 2010.

[11] M. Huang and J. H. Manton. Coordination and consensus of networked
agents with noisy measurements: stochastic algorithms and asymptotic
behavior. SIAM J. Control Optim., vol. 48, no. 1, pp. 134-161, 2009.

[12] M. Huang and J. H. Manton. Stochastic consensus seeking with noisy
and directed inter-agent communication: fixed and randomly varying
topologies. IEEE Trans. Autom. Control, vol. 55, no. 1, pp. 235-241,
Jan. 2010.

[13] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of
mobile autonomous agents using nearest neighbor rules. IEEE Trans.
Automat. Contr., vol. 48, pp. 988-1000, June 2003.

[14] S. Kar and J. M. F. Moura. Distributed consensus algorithms in sensor
networks with imperfect communication: link failures and channel
noise. IEEE Trans. Sig. Process., vol. 57, no. 1, pp. 355-369, 2009.

[15] A. Kashyap, T. Basar, and R. Srikant. Quantized consensus. Automat-
ica, vol. 43, pp. 1192-1203, 2007

[16] T. Li and J.-F. Zhang. Mean square average-consensus under mea-
surement noises and fixed topologies. Automatica, vol. 45, no. 8, pp.
1929-1936, 2009.

[17] I. Matei, N. Martins, and J. S. Baras. Almost sure convergence to
consensus in Markovian random graphs. Proc. 47th IEEE Conference
on Decision and Control, Cancun, Mexico, pp. 3535-3540, Dec. 2008.

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and coop-
eration in networked multi-agent systems. Proc. IEEE, vol. 95, no. 1,
pp. 215-233, Jan. 2007.

[19] R. Olfati-Saber and R. M. Murray. Consensus problems in networks
of agents with switching topology and time-delays. IEEE Trans.
Automatic Control, vol. 49, pp. 1520-1533, Sep., 2004.

[20] A. Olshevsky and J. N. Tsitsiklis. On the nonexistence of quadratic
Lyapunov functions for consensus algorithms. IEEE Trans. Automatic
Control, vol. 53, no. 11, pp. 2642-2645, Dec. 2008.

[21] R. Rajagopal and M. J. Wainwright. Network-based consensus aver-
aging with general noisy channels. arXiv:0805.0438v1, 2008.

[22] W. Ren and R. W. Beard. Consensus seeking in multiagent systems
under dynamically changing interaction topologies. IEEE Trans. Au-
tomat. Control, vol. 50, no. 5, pp. 655-661, 2005.

[23] W. Ren, R. W. Beard, and D. B. Kingston. Multi-agent Kalman
consensus with relative uncertainty. Proc. American Control Conf.,
Portland, OR, pp. 1865-1870, June 2005.

[24] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus prob-
lems in multi-agent coordination. Proc. American Control Conference,
Portland, OR, pp. 1859-1864, June 2005.

[25] I. D. Schizas, A. Ribeiro, and G. B. Giannakis. Consensus in ad hoc
WSNs with noisy links–part I: distributed estimation of deterministic
signals. IEEE Trans. Signal Process., vol. 56, pp. 350-364, Jan. 2008.

[26] E. Seneta. Non-negative Matrices and Markov Chains. Revised 2nd
ed., Springer, New York, 2006.

[27] S. S. Stankovic, M. S. Stankovic, and D. M. Stipanovic. Decentralized
parameter estimation by consensus based stochastic approximation.
Proc. 46th IEEE CDC, New Orleans, LA, pp. 1535-1540, Dec. 2007.

[28] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asyn-
chronous deterministic and stochastic gradient optimization algo-
rithms. IEEE Trans. Autom. Contr., vol. 31, no. 9, pp. 803-812, 1986.

[29] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic ma-
trices. Proc. American Math. Soc., vol. 14, no. 5, pp. 733-737, 1969.

[30] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus
with least-mean-square deviation. Journal of Parallel and Distributed
Computing, vol. 67, pp. 33-46, 2007.


