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Abstract— We consider stochastic consensus problems in
strongly connected directed graph models where each agent
has noisy measurements of its neighbors’ states. For consensus
seeking, we develop stochastic approximation type algorithms
with a decreasing step size and establish mean square and
almost sure convergence of the agents’ states to the same limit.

I. INTRODUCTION

Consensus problems are of importance, and in recent years

have been an intensively researched area in the context of

coordination and control of distributed multi-agent systems,

though they have a much longer history. The steady accu-

mulation of an enormous literature on this topic is, to a

large extent, due to its connection with a diverse range of

disciplines related to statistical decision theory, management

science, computer science, biology [30], [10], [5], [9], [29],

distributed computing, wireless ad hoc and sensor networks,

and multi-agent control systems [16], [1], [7], [8], [14], [15],

[4], [17], [19], [20], [25]. A comprehensive survey on the

recent research on consensus problems can be found in [23].

For a typical formulation within the context of multi-

agent coordination, one has a group of agents with individual

states, and the associated consensus algorithm is to form an

averaging rule [14], [2], [31], based upon the local infor-

mation of each agent, such that the iterates of all individual

states converge to a common value. The basic formulation

may be generalized to deal with asynchronous state update,

dynamic topologies or unreliable communication links (see

the survey [23]). In the literature, most existing algorithms

assume exact state exchange between the agents with only

very few exceptions (see, e.g., [22], [32]). A least mean

square optimization method was used in [32] to choose

the constant coefficients in the averaging rule so that the

long term consensus error is minimized. Also, in the early

work [3], [27], [28] convergence of consensus problems was

studied in a stochastic setting, but the exchange of random

messages between the agents was assumed to be error-free.

In particular, [28] obtained consensus results for a group of

agents minimizing their common cost function via stochastic

gradient based optimization.

In practical applications, the information exchange be-

tween different agents may involve the usage of sensors,
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quantization and wireless fading channels, which makes it

unlikely to have noise free data delivery. In such models with

noisy measurements, the traditional algorithms involving

a constant (or non-vanishing) step size in general cannot

ensure convergence. In the work [12], [13], [11], a stochastic

approximation type algorithm was proposed for consensus

seeking where the data transmitted from other agents are

corrupted by noises (see Fig. 1). In developing the averaging

scheme it is critical to maintain a trade-off in attenuating

the noise and ensuring a suitable stabilizing capability to

drive the individual states toward each other. To achieve this

objective, the step size can be decreased neither too slowly,

nor too quickly. In particular, almost sure convergence results

are obtained in directed graph models satisfying a circulant

invariance property [12], and mean square convergence is

established for connected undirected graphs by a stochastic

Lyapunov analysis [13].

In this paper, we generalize the analysis in [12], [13] to

strongly connected directed graphs. First, we analyze mean

square convergence by a stochastic Lyapunov analysis. In

this case, the useful properties of a graph Laplacian are no

longer available, and we need to construct suitable Lyapunov

functions. This, in turn, leads to the in-depth analysis of a

class of degenerate algebraic Lyapunov equations. Next, we

generalize the double array analysis in [12], and prove almost

sure convergence of the algorithm.

II. THE PROBLEM FORMULATION

Consider n agents distributed according to a directed graph

(or digraph) G = (N ,E ) consisting of a set of nodes N =
{1,2, · · · ,n} and a set of edges E ⊂N ×N . In the digraph,

an edge from node i to node j is denoted as an ordered pair

(i, j) where i 6= j (so there is no edge between a node and

itself). A path (from i1 to il) consists of a sequence of nodes

i1, i2, · · · , il , l ≥ 2, such that (ik, ik+1) ∈ E for k = 1 · · · , l−1.

We say node i is connected to node j(6= i) if there exists a

path from i to j. The graph G is said to be strongly connected

if each node i is connected to any other node j by a path.

For convenience of exposition, the two names, agent and

node, will be used alternatively. The agent Ak (resp., node k)

is a neighbor of Ai (resp., node i) if (k, i) ∈ E where k 6= i.

Denote the neighbors of node i by Ni = {k|(k, i) ∈ E }.

A. The Measurement Model

For agent Ai, we denote its state at time t by xi
t ∈R, where

t ∈ Z
+ = {0,1,2, · · ·}. For each i ∈ N , agent Ai receives

noisy measurements of the states of its neighbors. We denote
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Fig. 1. Measurement with noise wik
t .

the resulting measurement by agent Ai of agent Ak’s state by

yik
t = xk

t + wik
t , t ∈ Z

+, k ∈ Ni, (1)

where wik
t ∈R is the additive noise; see Fig. 1 for illustration.

The underlying probability space is denoted by (Ω,F ,P).
We call yik

t the observation of the state of Ak obtained by

Ai, and we assume each Ai knows its own state xi
t exactly.

There may be various interpretations for the additive noise; a

natural one is that xi
t is corrupted by noise during inter-agent

communication [22]. We introduce the assumptions:

(A1) The graph G = (N ,E ) is strongly connected.

(A2) The noises {wik
t ,t ∈ Z

+, i ∈N ,k ∈Ni} are indepen-

dent with respect to the indices i,k,t and also independent

of the initial states xi
0, i ∈ N , and each wik

t has zero mean

and variance Q
i,k
t ≥ 0. In addition, supi∈N E|xi

0|
2 < ∞ and

supt≥0,i∈N supk∈Ni
Qik

t < ∞.

Condition (A2) means that the noises are all independent

random variables with respect to both space (as indexed by

different pairs of neighboring nodes) and time.

B. The Stochastic Approximation Algorithm

The state of each agent is updated by the rule

xi
t+1 = (1−atbii)x

i
t + at ∑

k∈Ni

bikyik
t , i ∈ N , t ≥ 0, (2)

where the step size at ≥ 0, bik > 0 for k ∈ Ni, and bii =

∑k∈Ni
bik. We call bik, k ∈ Ni, the relative weight that Ai

assigns to its neighbor Ak. We restrict that atb
∗ ∈ [0,1], where

b∗ , max
i∈N

bii.

Thus the right hand side of (2) is a convex combination

of the agent’s state and its |Ni| observations. Here we use

|S| to denote the cardinality of a set S. The objective of

the consensus problem is to select {at ,t ≥ 0} so that the

individual states converge to a common limit in a certain

sense.

For each i, we further define

bik = 0, for k /∈ Ni ∪{i}. (3)

Define the matrix

B =











−b11 b12 · · · b1n

b21 −b22 · · · b2n

...
...

...
...

bn1 bn2 · · · −bnn











. (4)

Let w̃i
t = ∑k∈Ni

bikwik
t and define

xt = (x1
t , · · · ,x

n
t )

T , w̃t = (w̃1
t , · · · , w̃

n
t )

T . (5)

Then we write algorithm (2) in the vector form

xt+1 = xt + atBxt + atw̃t . (6)

We may also rewrite (2) in the form

xi
t+1 = xi

t + at(m
i
t −biix

i
t) (7)

where mi
t = ∑k∈Ni

bikyik
t and mi

t −biix
i
t provides a correction

term controlled by the step size at . Since the additive noise

is contained in {mi
t ,t ≥ 0}, each state xi

t will have long

term fluctuations if the step size at is selected as a constant.

With the aim of getting a stable behavior for the agents, a

vanishing sequence {at ,t ≥ 0} will be used below.

(A3) The sequence {at,t ≥ 0} satisfies i) at ∈ [0,(b∗)−1]
and ii) there exists T0 ≥ 1 such that

α

tγ
≤ at ≤

β

tγ
(8)

for all t ≥ T0, where γ ∈ (0.5,1] and 0 < α ≤ β < ∞.

Note that b∗ > 0 under (A1). In further analysis, the

parameters T0,α,β ,γ are treated as fixed constants associated

with {at ,t ≥ 0}. Note that (A3) implies

∞

∑
t=0

at = ∞,
∞

∑
t=0

a2
t < ∞, (9)

which is a typical property for step size sequences used in

classical stochastic approximation theory. We can see that

when at → 0 in (2), the signal xk
t (contained in yik

t ), as the

state of Ak, is attenuated together with the noise. Hence,

at cannot decrease too fast since otherwise, the agents may

prematurely converge to different individual limits.

C. Consensus Notions in Stochastic Models

Definition 1: (weak consensus) The agents are said to

reach weak consensus if E|xi
t |

2 < ∞, t ≥ 0, i ∈ N , and

limt→∞ E|xi
t − x

j
t |

2 = 0 for all distinct i, j ∈ N .

Definition 2: (mean square consensus) The agents are

said to reach mean square consensus if E|xi
t |

2 < ∞, t ≥ 0,

i ∈ N , and there exists a random variable x∗ such that

limt→∞ E|xi
t − x∗|2 = 0 for all i ∈ N .

Definition 3: (strong consensus) The agents are said to

reach strong consensus if there exists a random variable x∗

such that with probability one limt→∞ xi
t = x∗ for all i∈N .

Convergence with probability one is also called almost

sure (a.s.) convergence. In the above mean square and strong

consensus, the states xi
t , i ∈N , must converge to a common

limit. However, the limit x∗ as a random variable may depend

upon the initial states, noises and the consensus algorithm.

In this paper, we only consider scalar individual states and

the analysis may be easily generalized to the case of vector

individual states; see related discussions in [12].
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III. MEAN SQUARE CONVERGENCE

We prove the mean square convergence of algorithm (6)

by a stochastic Lyapunov function approach.

Lemma 4: Under (A1), all eigenvalues of B define by (4)

is inside the circle with radius b∗ > 0 on the complex plane:

{s : |s+ b∗| ≤ b∗} (10)

and s = 0 is an eigenvalue with multiplicity one.

Proof: Denote the eigenvalues of the stochastic matrix

I +B/b∗ by λi, 1≤ i ≤ n, where λ1 = 1 and |λi| ≤ 1 for i ≥ 2.

Since G is strongly connected, I + B/b∗ is irreducible. This

leads to analyzing the two scenarios below.

Case 1. If I +B/b∗ is aperiodic, then |λi|< 1 for all i ≥ 2.

Case 2. If I + B/b∗ is periodic with period d ≥ 2, then

there are a total of d eigenvalues, denoted by λ1, · · · ,λd with

absolute value equal to 1, and λk = e2π(k−1)i/d where 1 ≤
k ≤ d and i is the imaginary unit [24]. And |λk| < 1, for

d + 1 ≤ k ≤ n.

By combining Cases 1 and 2 about the distribution of the

eigenvalues of I + B/b∗, the lemma follows.

Let Sn×n denote the set of n×n real symmetric matrices,

and denote 1n = [1, · · · ,1]T . Define the set of matrices:

D , {D ∈ Sn×n : D ≥ 0, Null(D) = span{1n}}.

Obviously, each D ∈ D has rank n−1.

Theorem 5: Assuming (A1), for B defined by (4) and any

given D ∈ D , there exists a unique Q ∈ D to satisfy

QB + BT Q = −D. (11)

Proof: See Appendix.

Compared with the usual application of Lyapunov equa-

tions in stability analysis of linear systems, we have a more

adverse situation since B is not strictly stable. Consequently,

for the right hand side of (11) we only use D ∈ D , instead

of a positive definite matrix, and accordingly, the solution Q

is not required to be positive definition. But it turns out such

a “weaker” requirement for the pair (Q,D) is sufficient for

our convergence analysis. Due to the degenerate nature of Q

and D, we shall call (11) a degenerate algebraic Lyapunov

equation.

We use the solution matrix Q ∈D of (11) to construct the

stochastic Lyapunov function

PN (t) = xT
t Qxt , t ≥ 0,

where xt is generated by (6). Denote V (t) = EPN (t). We

have the following decay property of the Lyapunov function.

Theorem 6: Under (A1)-(A3), we have (i)

V (t + 1) =V (t)+ atExT
t (QB + BT Q)xt

+ a2
t ExT

t BT QBxt + O(a2
t ), (12)

(ii) there exist constants c1 > 0 and c2 > 0, determined by

the matrices B,Q and D, such that

V (t + 1)≤ (1− c1at + c2a2
t )V (t)+ O(a2

t ), (13)

for all t ≥ Tc, where Tc is selected such that 1−c1at +c2a2
t ≥

0 for all t ≥ Tc, and (iii) limt→∞ V (t) = 0.

Proof: The theorem may be proved by following the

argument in proving Theorem 5 in [13].

Theorem 7: Under (A1)-(A3), algorithm (6) achieves

mean square consensus.

Proof: First, by Theorem 6 we have

lim
t→∞

ExT
t Qxt = 0, (14)

where Q ∈ D . Next, we define the function

F(xt) =
n−1

∑
k=1

(xk+1
t − xk

t )
2 +(x1

t − xn
t )

2, t ≥ 0,

and may write F(xt) = xT
t QF xt , where QF ∈ D . Since Q

and QF both have the null space span{1n} and are positive

definite when restricted to the orthogonal complementary

subspace of span{1n}, by following the method in proving

Theorem 5 in [13], we can show that there exists a constant

c3 > 0 such that QF ≤ c3Q, and therefore F(xt) ≤ c3xT
t Qxt

which combined with (14) implies limt→∞ EF(xt) = 0; hence

weak consensus follows.

We continue to prove mean square consensus. For a ∈
(0,(b∗)−1), we write the equation

πT (I + aB) = πT (15)

where π = (π1, · · · ,πn)
T . For the given value a, I + aB is

the transition matrix of an irreducible and aperiodic Markov

chain with no transient states, hence there exists a unique

invariant probability measure π satisfying (15) and having n

positive entries. By (15), we have the recursion

πT xt+1 = πT xt + atπ
T w̃t , t ≥ 0.

By (A2)-(A3), πT xt converges in mean square to a limit x∗.

Recalling the weak consensus result, we have

lim
t→∞

E|xi
t − x∗|2 = lim

t→∞
E

∣

∣

n

∑
k=1

πk(x
i
t − xk

t )+ πT xt − x∗
∣

∣

2
= 0,

for each i ∈ N .

Remark: Theorems 6 and 7 hold when (A3)-ii) is replaced

by (9).

IV. ALMOST SURE CONVERGENCE

For each t ∈ Z
+, the set of noises {wik

t , i ∈ N and k ∈
Ni 6= /0} is listed into a vector wt in which the position of

wik
t depends only on (i,k) but not on t.

(A2’) The initial state vector satisfies P{|x0| < ∞} = 1.

The sequence {wt ,t ∈ Z
+} constitutes i.i.d. vector random

variables with zero mean and E|wt |
τ < ∞ for some τ ∈

(1,2].
Theorem 8 below is based on Theorem 3 in [26] and is

useful for studying sample path behavior of algorithm (6).

Theorem 8: [26] Let {w,wt ,t ≥ 1} be i.i.d. real-valued

random variables with zero mean, and {aki,1≤ i≤ lk ↑∞,k ≥
1} a double array of constants. Assume (i) max1≤i≤lk |aki|hi =
O(1/ logk), where 0 < hi ↑, hi = O(i1/δ ) for some δ ∈
[1,2], (ii) ∑∞

i=1 P{|w| > hi} < ∞, and (iii) hi/i ↓ and

∑
lk
i=1 |aki|

2h2−δ
i = o(1/ logk), ∑

lk
i=1 |aki|

2h2−δ
i = O(1/ log lk).

Then we have limk→∞ ∑
lk
i=1 akiwi = 0 a.s..
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Corollary 9: If {w,wt ,t ≥ 1} are i.i.d. R
n-valued random

variables with zero mean and {Aki,1 ≤ i ≤ lk ↑ ∞,k ≥ 1} an

R
n×n-valued double array, then limk→∞ ∑

lk
i=1 Akiwi = 0 a.s., if

conditions (i) and (iii) of Theorem 8 hold after replacing |aik|
by the matrix norm ‖Aik‖ and if condition (ii) of Theorem

8 is satisfied by the vector random variable w.

We proceed to prove the sample path convergence of

algorithm (6), which is rewritten below:

xt+1 = xt + atBxt + atw̃t .

By (28) in Appendix, we have a nonsingular real matrix

Φ = (1n,φn×(n−1)) such that Φ−1BΦ =
(

0

B̃n−1

)

, B̃,

where the n− 1 eigenvalues of B̃n−1 have strictly negative

real parts. Letting zt = Φ−1xt and ṽt = Φ−1w̃t , we have

zt+1 = zt + at B̃zt + at ṽt , t ≥ 0.

Let zt = [z1
t , · · · ,z

n
t ]

T , ṽt = [ṽ1
t , · · · , ṽ

n
t ]

T , and z(n−1) =

[z2
t , · · · ,z

n
t ]

T , ṽ
(n−1)
t = [ṽ2

t , · · · , ṽ
n
t ]

T . We have the relation:

z1
t+1 = z1

t + at ṽ
1
t , (16)

z
(n−1)
t+1 = (I + atB̃n−1)z

(n−1)
t + at ṽ

(n−1)
t . (17)

Lemma 10: Assuming (A1) and (A3), there exist con-

stants δ̂ ∈ (0,(supt≥0{at})
−1] and C > 0 such that

‖
l

∏
i=k

(I + aiB̃n−1)‖ ≤C
l

∏
i=k

(1− δ̂ai), ∀ l ≥ k ≥ 1. (18)

Proof: We solve the algebraic Lyapunov equation

B̃T
n−1Q̃+ Q̃B̃n−1 =−I to get a unique Q̃ > 0. Let the constant

T1 be selected such that at B̃
T
n−1Q̃B̃n−1 ≤ (1/2)I for all t ≥ T1.

It suffices to prove (18) for all l ≥ k ≥ T1. For t ≥ T1,

(I + at B̃n−1)
T Q̃(I + atB̃n−1) = Q̃−atI + a2

t B̃T
n−1Q̃B̃n−1

≤ Q̃− (at/2)I

≤ Q̃− (at/(2λmax))Q̃

, (1− δat)Q̃ (19)

where λmax > 0 is the largest eigenvalue of Q̃. Hence

(I + alB̃n−1)
T · · · (I + akB̃n−1)

T Q̃(I + akB̃n−1) · · · (I + alB̃n−1)

≤ (1− δal) · · · (1− δak)Q̃, l ≥ k ≥ T1. (20)

We may take any 0 < δ̂ < (δ/2)∧ (supt≥0{at})
−1 and the

lemma follows.

For any δ ∗ ∈ (0,(supt≥0{at})
−1], we define

Πl,k = ak

l

∏
i=k+1

(1− δ ∗ai), (21)

where l ≥ k ≥ 1. We have the lemmas.

Lemma 11: For {at ,t ≥ 0} satisfying (A3), we have the

upper bound estimate: (i) If γ = 1 and ε ∈ [0,1)

t

∑
k=1

Π2
t,kkε =







O(t−2αδ ∗
) if 0 < α < (1− ε)/(2δ ∗)

O(tε−1 ln t) if α = (1− ε)/(2δ ∗)
O(tε−1) if α > (1− ε)/(2δ ∗).

(ii) If 1/2 < γ < 1 and ε ∈ [0,γ), then ∑t
k=1 Π2

t,kkε = O(tε−γ).

Proof: We obtain the estimates by the same approach

as in proving Lemma 5 of [12].

Lemma 12: Given ε ∈ [0,γ −1/2), max1≤k≤t Πt,kkε+1/2 =
O((ln t)−1).

Proof: Case (i) γ = 1. Similar to Lemma 4 in [12], we

can show Πt,k ≤ [β (k + 1)αδ ∗
]/[k(t + 1)αδ ∗

]. Hence

max
1≤k≤t

Πt,kkε+1/2 =

{

O(t−αδ ∗
) if αδ ∗ + ε ≤ 1/2

O(tε−1/2) if αδ ∗ + ε > 1/2,

which implies that the lemma holds for γ = 1.

Case (ii) 1/2 < γ < 1. Again, similar to Lemma 4 in [12],

we have

Πt,k ≤ exp{−
αδ ∗

1− γ
[(t + 1)1−γ − (k + 1)1−γ]}

β

kγ
. (22)

Then in parallel to Lemma 8 of [12], we obtain

max1≤k≤t Πt,kkε+1/2 = O(tε+1/2−γ) for 1/2 < γ < 1.

Theorem 13: Assume (A1), (A2’) and (A3) hold with

γτ > 1. Then zt converges a.s. to a random variable z∞ =
(z1

∞,0)T as t → ∞.

Proof: Since z1
t+1 = ∑t

i=0 aiṽ
1
i and ∑∞

t=0 aτ
t E|ṽ1

t |
τ < ∞

there exists z1
∞ such that limt→∞ z1

t = z1
∞ a.s. (see [6], pp.

114)).

For the sequence {z
(n−1)
t ,t ≥ 1}, we have the relation

z
(n−1)
k+1 =

[ k

∏
t=1

(I + atB̃n−1)
]

z
(n−1)
1

+
k

∑
i=1

[ k

∏
t=i+1

(I + atB̃n−1)
]

aiṽ
(n−1)
i

=
[ k

∏
t=1

(I + atB̃n−1)
]

z
(n−1)
1 +

k

∑
i=1

ΠM
k,iṽ

(n−1)
i , (23)

where the matrix ΠM
k,i is defined in an obvious manner. By

Lemma 10, we see that

lim
k→∞

[ k

∏
t=1

(I + atB̃n−1)
]

z
(n−1)
1 = 0, a.s. (24)

By Lemma 10 again, we obtain |ΠM
k,i| ≤CΠk,i, for all k ≥

i ≥ 1, where C is a fixed constant. Lemmas 11 and 12 give

max
1≤i≤k

|ΠM
k,i|i

1/τ = O((lnk)−1),
k

∑
i=1

|ΠM
k,i|

2i2/τ−1 = o((lnk)−1),

(25)

where we can verify that the exponents 1/τ and 2/τ − 1

satisfy the conditions in Lemmas 11 and 12.

On the other hand, note that {ṽ
(n−1)
i , i ≥ 1} is a sequence

of i.i.d. vector valued random variables. We have
∞

∑
k=1

P{|ṽ
(n−1)
1 | > k1/τ} =

∞

∑
k=1

kP{k1/τ < |ṽ
(n−1)
1 | ≤ (k + 1)1/τ}

=
∞

∑
k=1

kP{k < |ṽ
(n−1)
1 |τ ≤ k + 1} ≤ E|ṽ

(n−1)
1 |τ < ∞. (26)

We apply Corollary 9 by taking lk = k, δ = τ , hi = i1/τ ,

Aki = ΠM
k,i, wt = ṽ

(n−1)
t , t ≥ 1, and all its conditions have been

verified by (25) and (26). Hence limt→∞ ∑t
k=1 ΠM

t,k ṽ
(n−1)
k = 0
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Fig. 2. The digraph with 5 nodes.
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Fig. 3. The 5 trajectories fail to converge when fixed weights are used.

a.s., which combined with (24) implies limt→∞ z
(n−1)
t = 0,

a.s. Hence limt→∞ zt = (z1
∞,0)T a.s.

Theorem 14: Under (A1), (A2’) and (A3), algorithm (6)

ensures strong consensus.

Proof: By xt = Φzt and Theorem 13, the limit x∞ =
limt→∞ xt exists a.s., and x∞ = Φz∞ =(1n,φn×(n−1))(z

1
∞,0)T =

z1
∞1n a.s., which implies strong consensus.

V. NUMERICAL SIMULATIONS

We consider a digraph with 5 nodes as shown in Fig. 2.

The variance of the i.i.d. Gaussian measurement noises is

σ2 = 0.01. The initial state vector is xt |t=0 = [4,3,1,6,1]T .

Fig. 3 shows the simulation of the standard averaging rule

with equal weights for an agent’s neighbors and itself (for in-

stance, x1
t+1 = (x1

t +y12
t +y15

t )/3, t ≥ 0), and no convergence

is achieved. Fig. 4 shows mean square and strong consensus

as achieved by algorithm (6) with bi j = |Ni|
−1, j ∈ Ni, and

the step size sequence {at = (t +5)−0.85,t ≥ 0}, where the 5

trajectories all merge toward a constant.

VI. CONCLUSIONS

We have analyzed stochastic consensus algorithms with

measurement noise in strongly connected digraph models.

Two different approaches, i.e., Lyapunov analysis and double

array analysis, are developed, leading to mean square and

almost sure convergence results, respectively. For future

work, it is of interest to generalize the convergence analysis

to dynamic network topologies.

VII. APPENDIX

Proof: We split the proof into 2 steps.

Step 1. We introduce the integral representation formula

Q =
∫ ∞

0
eBT tDeBtdt. (27)
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x t

Fig. 4. The 5 trajectories converge to the same constant level with a
decreasing step size.

We need to show that the right hand side is well defined and

that it gives a solution to (11).

Since B has the eigenvalue 0 and another n−1 eigenvalues

with strictly negative real parts, in below we show there

exists a real matrix Φ , (1n,φn×n−1), where φn×(n−1) is

an n × (n − 1) matrix, such that we have the block-wise

diagonalization

Φ−1BΦ =

(

0 0

0 B̃n−1

)

, (28)

where B̃n−1 ∈ R
(n−1)×(n−1) is a strictly stable matrix. Note

that 1n is the eigenvector of B associated with the eigen-

value 0. Since rank(B) = n − 1, there exist n − 1 lin-

early independent vectors ζi, 1 ≤ i ≤ n− 1, such that S ,

span{ζ1, · · · ,ζn−1} = span{B} where span{B} denotes the

linear space spanned by the columns of B. Obviously, 1n /∈ S.

We take φn×(n−1) = (ζ1, · · · ,ζn−1) and compose a nonsingu-

lar matrix (1n,φn×(n−1)). Since S is an invariant subspace

of the linear transform associated with B, there exists an

(n−1)× (n−1) matrix B̃n−1 such that

Bφn×(n−1) = φn×(n−1)B̃n−1,

and (28) follows.

Let c > 0 be a constant such that the real part of each

eigenvalue λ̄k of B̃n−1 is strictly less than −c, i.e.,

Re(λ̄k) < −c, k = 1, · · · ,n−1. (29)

For D∈D , we use D1/2 to denote the nonnegative definite

matrix such that D = (D1/2)2. It is easy to check that

Null(D1/2) = span{1n}. Now it follows that

D1/2eBt = D1/2(1n,φn×(n−1))

(

1 0

0 eB̃n−1t

)

Φ−1

=
(

0,D1/2φn×(n−1)e
B̃n−1t

)

Φ−1.

Subsequently, for c determined in (29), we have

‖eBT tDeBt‖ = O(e−2ct), (30)

which implies the integral in (27) converges.
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We continue to show that Q ∈ D . Since D ≥ 0, we have

Q ≥ 0. By the power series expansion of eBt , we can show

eBt1n = 1n since 1n ∈ Null(B). Then (27) leads to

Q1n =
∫ ∞

0
eBT tD1ndt = 0.

On the other hand, if there exists a nonzero real vector ξ
such that Qξ = 0, then we have

ξ T Qξ =

∫ ∞

0
ξ T eBT tDeBtξ dt = 0.

By ξ T eBT tDeBtξ ≥ 0 for all t ≥ 0 and its continuity in t,

we necessarily have ξ T eBT tDeBtξ |t=0 = ξ T Dξ = 0, which

implies ξ ∈ span{1n} since D ∈ D . So we conclude Q ∈ D .

Next, we verify Q defined in (27) is the desired solution.

For each C ∈ (0,∞), we have

(
∫ C

0
eBT tDeBtdt)B + BT(

∫ C

0
eBT tDeBtdt)

=

∫ C

0

d

dt
(eBT tDeBt)dt = eBT CDeBC −D. (31)

By letting C → ∞ in (31), it follows from (30) that

QB + BT Q = −D (32)

where Q is defined by (27). This proves the existence of a

solution to the algebraic Lyapunov equation (11).

Step 2. Now we prove uniqueness. Suppose there exists

Q̄ ∈ D such that

Q̄B + BT Q̄ = −D. (33)

Let ∆ = Q̄−Q. By (32) and (33), we get ∆B = −BT ∆,

which leads to ∆(Bt)k = (−1)k(BT t)k∆, for k = 0,1,2, · · · ,
and therefore

∆eBt = e−BT t∆. (34)

By (34), we get

∆ = eBT t∆eBt = eBT tQ̄eBt − eBT tQeBt . (35)

Similar to (30), we get the estimate

‖eBT tQ̄eBt‖+‖eBT tQeBt‖ = O(e−2ct), (36)

as t → ∞, by the fact that both Q and Q̄ are in D . Hence (35)

and (36) imply that ∆ = Q̄−Q = 0, and uniqueness follows.
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