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Values of the Euler phi function
not divisible by a given odd prime

Blair K. Spearman and Keuncth S. Williams

Abstract. An asymptotic formula is given for the number of integers n<az for which ¢(n)
is not divisible by a given odd prime.

1. Introduction

We denote the set of natural numbers by N and the sct of integers by Z. If
a€Z and b€Z are not hoth 0, we denote the greatest common divisor of a and b
by (a,b). We let ¢ denote Euler’s phi function so that for n€IN we have

1
(1) o(n):=card{fmeN|1<m<nand (m.n)=1}= nH(l—-).
pln b

where the product is taken over the distinct primes p dividing n. Throughout this
paper p denotes a prime. It is well known that for neN,

2t0(n) < n=12

We are interested in those n €N for which ¢gto(n), where ¢ is a fixed odd prime. We
set

(2) E ix)=card{n<x|gto(n)}.

In 1990 Erdés, Granville, Pomerance and Spiro gave an upper bound for E,(r),
which is valid for all sufficiently large x, sce [1. Equation (4.2) with k=1, p. 191].
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In this paper we give an asymptotic formula for Eq(x) as x— o0, see the theorem
in Section 4. Let 0<e<1. For ¢ a fixed odd prime, we show that

E,(x) =e(g)x(log x) "/~ L O(z(log z)~9/ (4 DFe),

as x— o0, where e(q) is given in Definition 4.1 and the constant implied by the
O-symbol depends only on ¢ and . In 2002 Luca aud Pomerance [2, Lemma 2,
p. 114] proved the related result: For some constant ¢>0, for almost all n, ¢(n) is
divisible by all prime powers p® <cloglogn/logloglog n.

2. Notation

We denote the sets of real numbers and complex numbers by R and C, respec-
tively. As usual I' denotes the gamma function and 7 is Euler’s constant. If I is an
algebraic number field we write h(K) for the class number of K and R(K) for the
regutator of K, see for example [3, pp. 97, 106]. Throughout this paper g denotes
a fixed odd prime. We set

(3) K,:=Q(e*"/9) CC,

so that I{; is a cyclotomic field with [K,:Q]=¢(¢)=¢—1. For brevity we set
(4) h(q):=h(K,) and R(q):=R(K,).

We also let

(5) wi=em/ - e,

so that w9~ 1=1. The principal character xo (mod ¢) is defined as follows: for n€Z
we have

(©) Yo(n) = { 1, if n#0 (mod gq),

0, if n=0{(mod ¢).
Let g be a primitive root (mod ¢). For neZ with n#£0 (mnod ¢) the index
indy(n) of n with respect to g is defined modulo g—1 by

ind,(n) (

n=g mod q).

We define a character x4 (mod g¢) as follows: for n€Z we set
ind,n :
wide™ - if n£0 (mod q),
(7 Xg(n) = e
0, if n=0(mod g).

There are exactly ¢(¢)=¢—1 characters (mod ¢). They are

(8) X0s Xg» sz'“e Xg_zv

where x¢ ™! =xo.
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3. The constant C(q)

It is convenient to define the following coustant involving x,.

Definition 3.1. Let ¢ be an odd prime. Let ¢ be a primitive root (mod ¢). Let
re{l,2,...,q—2}. We define

1
(9) Clarxg)= ] (1‘m)’
Ao (P)=w’

where the product is taken over all primes p such that x4(p)=w".

Note that the prime g is not included in the product as x4(q)=0 by (7). As
1§(r,q—1)§%(q—l) for re{1,2,...,q—2} we have

g—1
1o (g D"

so that the infinite product in (9) converges. Let h be another primitive root
(mod ¢). Then there exists an integer s such that

h=g¢°(mod q). (s,g—1)=1.

Let t be an integer such that st=1 (mod ¢—1). Then, for n€N with n#0 (mod g),
we have

indy(n)=tind,(n) (mod ¢—1)

so that

tind, (n)

wind,,(n) —w — (\q(”))f X;(”)’

Xh (”) =

that is x=x}. Hence

q-2 1y 1 (ryg—1)
T(l — -
HC(q,I,Xh H H <1 p(q_l)/(r.q_“>

r= lx,,(

1 (r.g—1)
11 L ( —W)

rflx

1 (rg—1)
ST ‘(1—m>

r=1x,(p)=
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q—2 1 (rs.a—1)
=11 11 (l*pm)

=1 x,(p)=w""

g-2 1 (rg=1)
:H 11 (l“p(q—l)/(r,q—l))

r=1 Xv(P)Z“J
q—2
~T[ Cla,r.xg) oD
r=1
so that the product
qg—2
(11) [Tct@rxgtme D

r=1

does not depend on the choice of primitive root g. Thus we can make the following
definition.

Definition 3.2. Let q be an odd prime. We define the constant C(q) by
q—2
(12) Clq):=[] Cla.r. xg) 771

r=1

We take this opportunity to determine C(3). It is convenient to define the constant
kau(m) by

(13) kan(m):= ] (1*#)

p=b (moda})

where aeN and be NU{0} are such that 0<b<a and (a,b)=1 and meN is such
that 1 >2.

Lemma 3.1. C(3)=k3,2(2).

Proof. Let g=3. Then w=-1, r=1, g=2 and x»2(n)=(~3/n). Hence

C®)=C6.1xm)= [] (1“;12>: 11 <1~l2)=k-3,2(2>.

x2{p)=—1 p=2(mod3) P

as asserted. [
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4. Statement of main result
We begin with a definition.
Definition 4.1. Let g be an odd prinie. We define

. 1 s
(q+1)(g—1)la=2/la=0p [ — ) sin
qg—1 qg—1
2((]_3)/2((771)(13(‘742)/2((’_l)W:;/g(/l,((j)R(q)C((j))l/(q—l I

(14) e(q):=

Before stating our main result. we give the value of €(3).

Lemma 4.1.

97/2

e(3) = 3TIA“ (2)!2.

Proof. We have F(%) =7, C(3Y=ky2(2) and n(3)=R(3)=1, so that Defini-
tion 4.1 with ¢=3 gives

As

we have

27 1 27/2
Fao(®=————  aud e(3)=>"—
3.2(2) FREYSCTIIL e(3)

as asserted. O
Our maiu result is the following asymptotic formula for E,(x).
Theorem. Let O<e<1. Forq an odd prime, we have
E (2) =e(q)r(log x) "D £ O(r(loga) 9/ (9= D+ey,

as c— oo, where the constant implied by the O-symbol depends only on ¢ and =, and
e(n) is given in Definition 4.1.

This theorem is proved in Section 7 after some preliminary results are given in
Sections 5 and 6.
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5. Preliminary results

The following results will be used in Sections 6 and 7.

Proposition 5.1. Let neN and let ¢ be an odd prime. Then

gto(n) = n= H PP orn=gq H PP,

p#Z1 {modq) pZ1 (mod q)

where the product is taken over all primes p#q with p£1 (mod q) and the a(p) are
non-negative integers.

Proof. If

1
a
n=q"J]#}".
j=1

where a and t are non-negative integers, the p; are distinct primes #¢, and the a;
are non-negative integers, then by (1)

t
H Pj’"i—l(Pj—l), if a=0,
¢(n) =< I .
¢ Na-1) [0} i-1), ifa>1.
j=1

Hence ¢f¢(n) ¢ a<{0,1} and ¢tp; —1 (j=1, ..., t), which proves Proposition 5.1. [
Next we define the set A by

(15) A={meN/|p(prime) |m=p+#q and p#1(mod q)}.

The function A(zx) is defined for z€R by

(16) Ax)= > 1L
m<c
meEA
Proposition 5.2. For z€R and ¢ an odd prime we have
T
E,(x)= ACEH_A(Q) .

Proof. This follows immediately from Proposition 5.1. O
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Proposition 5.3. (Wirsiug's theorem) Let f: N—R be multiplicative with
fF(n)=0 for all neN. Suppose that there exist constants ¢1 and ¢4 with ¢1>0 and
0<eo<?2 such that

0< f(p") <ereh,

Jor all primes p and all keN. and also that there is a constant T with 7>0 such
that

) a &
D) =T ——10| —— |,
Z ) log (log :r) '
p<r
as .r—c, then

(T r fp) | f?)
Zf(n,)—(F(T)—Fo(l))ml—[(l—&— — 4 2 -l—)

. )
n<r pLr I

as r-—0oc.
Proof. See (7, Satz 1, p. 76].

Proposition 5.4. (Odoni’s theorem) Let f: N—R be multiplicative with
fnY2>0 for all neN. Suppose that there exist constants a1>1 and ay>1 such
that

0< F(pk) <ark®.

Jor all primes p and all keN. and also that there are constants 7 and 3 with 7>0
and 0<3<1 such that

: & . L
p;f () fr—logﬁo(w).

as L—00, then there is a constant B >0 such that

as x—00. Further. for each fired A>0, we have
(17) Z FOur P = A" ' Brrr(log )T + O Mlog x)T~ 1),
n<r

as r—0C0.

Proof. See [4, Theorew I, p. 205; Theorem 111, p. 206; Note acded in proof,
p. 216]. O
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From Propositions 5.3 and 5.4 we obtain the following corollary.

Proposition 5.5. Let f: N>R be multiplicative with 0<f(n)<1 for all
neN. Suppose that there are constants T and 3 with 7>0 and 0< (<1 such that

£
%100~ zayes)

p<x

Then

1 2
lim ——— H(1+——f(p)+f(1; )+...)
woee (logx)™ P P
exists, and

> f(n) = Ex(logz)" "'+ O(x(log )" ' =7),
n<zr
with
0y

oY 1 (o ) f(?)
E= oy i, o H(H , +7+...>.

p<a

Proof. The conditions of Odoni’s theorem are met (with a)=a2=2) so by (17)
with A=1 there is a constant B>0 such that

> f(n)=Bzr(logz) ' +O0(x(logz)” 7).

n<x
The conditions of Wirsing’s theorem are also met (with ¢; =co=1) so that

an)ﬂ<_+ a ))bcrxH( f(p) f;z;) )

p<T

Equating the two expressions for an_r f(n), and dividing by z(log x)"~!, we obtain
—r
Br+0O((logz)~?) = <PF—(T—) +0(1)> (logz)™" [ ( SACUN ;‘; ) +)

p<x

Letting x— oo we have

lim (logz)™" H <1+M+LI;2)+...) =BrI'(1)e"".
T30 oot P P
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Thus
> f(n) = Ez(logz)" " +O(z(log z)"~*7¥),
n<e
with
EZBTZQ lim (1 —1- M f(pQ) )
im (log 2) H(1+ . i )

(1) 500 s p?

as asserted. O
Proposition 5.6. Let ke N and €N be such that 1<I<k and (k,{)=1. Then
1 T T
Z l_cﬁ(k) logz+0<(log$)2>’ as T — 00.

p<a
p=l(modk)

Proof. This is the prime number theorem for the arithmetic progression {kr+1|
r=0,1,2,...}, see for example [5, p. 139]. O

Let keN. Let x be a character (mod k). Let xo be the principal character
{mod k). The Dirichlet L-series corresponding to x is given by

o
(18) Lis, =3 Xéf’),
n=1
where s=0 +it€ C. For x#xo, the series in (18) converges for ¢ >0 and
00 -1
(19) L1,x)=Y" XE:?’) =H(1—%p)) £0.
n=1 p

For each character x (mod k) we define a completely multiplicative function &, (n)
(neN) by setting, for primes p,

—-x(p)
p 1\

(20) kx<p>:p[1—(1—ﬁ) (1-3) ]

p p
The Dirichlet series corresponding to &, is given by

0

ky(n

(21) K(s,x)=>_ %

n=1 ’

where s=c+iteC. It is shown in [6] that the series in {21) converges absolutely
for >0 and that

140 ) (1)

P P p
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Proposition 5.7, Let k€N and leN be such that 1<I<k and (l.k)=1. Then

1T <1 - 3) = Al k)(log )~ VR L O((log x)~H/ethI=1),

)
p<x F

p=l(mod k)

v (- K Mjm)l/om
A= <( o(k) 11 <L(1.,x) :

XF\o

as r—2, where

Proof. This proposition is Mertens’ theorem for the aritluuetic progression
{kr+1]r=0,1,2,...}, which was first proved by Williaws [6] in 1974. O

Proposition 5.8. Let k,m,reN. Let wy be a primitive k-th root of unity.

Then
k—1 . wir (4 1 (k,r)
I—IO T ) U ik k) '

J

Proof. Let k,7reN. Set

k r
h= and s=——.
(k,r) He (k)
As (I, $)=1 the h-th roots of uiity are w,j;'s, 7=0,1,...h—1. Thuswi’, j=0.1,.... k=1
comprise the fi-th roots of unity each repeated k/h times. Hence
k—1
N k/h = VE]
(= 1)~ :H(.L—u)flb).
7=0

k

Taking x=meN, and dividing both sides by m”*, we obtain

1 k/h k-1 s k=1 “)J]
< mh> H ( m > H < m >
=0 j=0

which is the asserted result. O

6. Estimationof || (1-1/p)

p<=
P=1 (mod o)

We begin with the following result.

Proposition 6.1.

q—2 1
K(1\)= .
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Proof. By Definition 3.1 we have

q—2 q-2
—(rg—=1) _ |3

[T ¢t x,) = lim ]

r=1 r=1

( 1 —{rg-1)

I | 1——) .
—1}/{(r,g—1

p<a p(q )/ (r.g=1)

Xy (p) =w"
Next, as

q—2

S { q—1, ifr=0,

=0 0, ifr=1,2,...,q-2,
we have

q—2 1 —(r,g—1)
,11 1 (l_p )

(¢—1)/(r,q—-1)

M0 ()
-1)/(r,g—1)
b S pla—1/(rq
Xq(p)=w"

By Proposition 5.8 with m=p, k=¢—1 and w=w,_; we have

j_
so that

(rg-1) g¢-2 jr
1 J
. S— [T(1-2
p(q~1)/(r,q—1)
=0

q—2
r=0

I &

(1 1 )_M_l) <1 1>Ef;;3 W'
T (g=1)/(rg—1) -
o p(q )/ (rq

p
Xq(p)=w"
q=2 q-2 Wit 1\
=11 II II{:- 1=
r=0 p<z  j= p
xy(P)=w N
9-29-2 wit\! 1
= H 1— 1—-—
j=1r=0 p<zx p p
o (p)=w’

X
9-2 J -1 x4 (p)
]_ a
_ <1-_Xg(”>) (1__) .
j=lp<z P p
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Finally by Definition 3.2 we obtain

1 q-2 ) q=2 \! (p) —1 1\ )
— ) . —(r.g—1 — . _Ng -
C(q) [1¢@rx) H s 11 (1 P > (1 1))
r=1 j=1 p<r
q-2 J ~1 Aj(p) a=2
x3(p) L\ o
:HH<1——-{ ) (1——)) =[x ).
i P i ol
as asserted. (O
Proposition 6.2.
qg-—-2
H L(l, \é) =20=3/24=a/22a= D121 (VR (q).
j=1

Proof. The cyclotomic field K, is a totally complex field which contains exactly
2¢ roots of unity, namely {£1, fw,, :twg. e :twg_l}. Hence, by the class nuinber
formula for abelian fields applied to the cyclotomic field K, we have

q—2
h(q)R(q) = 2qld(K,)| 227 0= D2 =02 TTL(1.4).

Jj=1

where d(I,) is the discriminant of I, see for example [3. Theorent 8.4, p. 430].
Now the discriminant of K is given by

d([(q) = (-l)‘l(‘l—l)/Qqq—‘z’

see for example [3, Theorem 2.9, p. 63]. Heuce

g—2
H L(1. \d]) — 2((’“"”/2(1“7/271’((’_1)/2/1,((1)]?((1).
J=1

as asserted. (O
Proposition 6.3. Let g be an odd prime. Then

I1 (1 - 1) = A¢)(log )=~V L O((log ) =9/ tv=1),

D
p<x F

p=1(modq)

as 00, where

A= (

e=7271a=3)/24(a+2)/2 (g 1)/2 >1/(<1‘1>
(¢=D)()R(9)C(q)
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Proof. By Propositions 6.1 and 6.2 we obtain

I:I XJ 2 (4=3)/24a/27~(q-1)/2
ol h(@)R(g)C(q)

By Proposition 5.7 with k=g and [=1, we have

H (1—%> :/\(Q)(log ‘T)_l/(q-”+O((log:c)—12/(q~1))7

p<e
p=1{(modgq)

where

] 1/(g—1)
A=At = (L H 11;‘)

(_7 q 2_(‘1_3)/2(1‘7/277—(11—1/2)1/(11—1)
a-1  h(g)R(q)C(q)

e~ 727 (a=3)/24(a+2)/ 2~ (g-1)/2 1/(g—1)
:( (- (@) R()C() ) !

as asserted.
Proposition 6.4. Let 0<e<1. Then

A(z) = a(g)z(log 2) VOV +O(z(log )~ ¥/ la=1)Fe),

1 ™
=2/ (e — ) gin[ —
(g—1) o sin o,

26=3)/2a=1gla—H/2=D73/2(h(q)R(q)C(q)) /@1’

as T— oo, where

a(q) =
(The constant implied by the O-symbol depends only on q and €.)

Proof. By (16) we have

A@)= Y 1=3 f(n)

n<zx n<x
ncA

where

1, ifneA,
fln)= .
0, ifn¢A.
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Clearly f(n) is a multiplicative function by (15). Moreover 0< f(n)<1 for all n€N.
By Proposition 5.6 we have

N _ n_4—2 x
Zj(p)~ Z l= Z 1+O(l)_q~1log:l:+0<(log;li)2>’

psw psz r<zr
pEA pZ£1 (modgq)

as x— 0. Hence, by Proposition 5.5 with 7=(¢—2)/(¢—1) and g=1—¢, the limit

1 iyt
.J3i&(1og;,,-)<q—‘z>/<q—1> 11 <1_;>

plr
P#q
pZ1 (modq)

exists, say cqual to A {(¢), and

e—(a=2)/(g—1) ) A
Alx) = — M{(g)z(log )" VD L O (e (log ) ~9/ am Dy,

-2
(i)
g—1

as r—o0. Now for x>¢

psa

p#q
pZ1 (modgq)
p=1(modq)

By Mertens’ theorem we have

11 <1—%> =e (1 +O(1))101,$.,

p<x

as £ — 00, so appealing to Proposition 6.3, we obtain

H <l—l> _ 1 e~ (1+o(1))(logx)~!

AR (A R IR R

p#q
pZl1 {(modqg) q

qe” " CoA—(g=2)/(g—1)
= (1+40(1))(loga)~l =,
(q—l)A(q)( (1)log.r)



180 Blair K. Spearman and Kenneth S. Williams

so that
L 1\ _ (g=1)e"A(q)
(log z)(a—2)/(a=1) ;)1:[.1 (1_;> = f(l"‘o(l))-
p#q
pZ1 (modg)

Hence

M(q) = DN,

q
Finally
v/(g-1) _
Alz) = L, I)A(q)x(log z)~ V=D L Oz (log 2) Y/ (4~ VFey,

-2
()
qg—1

as r— 00, 80 lhal as
( ) ( ) T

Slnq_—l
we have
1 T
~2)/(g—1 .
s a2
alg =ﬁ p A(Q):2(q—3)/2(q—1)q(q—4)/2(q_1)7r3/2(h(q)R(q)C(q))l/(q_l).
g—1

This completes the proof of Proposition 6.4. O

7. Proof of the theorem

By Propositions 5.2 and 6.4 we have

Eq(x):A(.r)—l—A(g)

= a(q)z(log z) ™Y@=V 1 O(z(log z) =9/ (4= D)+%)

~1/(a—1) —q/(q—1)+¢
+a((1)z(103 E) +O<£<log z) )
q q q q

= a(g)x(logx) V4=V 1 O(x(log x) "9/ (4= DFe)

+#I((logwrl/(q—”+O((logx)“’/(q‘l)))-l-o(x(log x)—q/(q—l)—Fs)
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= alq) (1 + 1) x(log )~V L O(x(log x) 9/ la e
q

=e(g)z(logz) V™D L O(x(log x) ¥/ (1= D+e),
as r—oc. O

By Lemima 4.1 and the theorem (with ¢=3), the number of n<u for which

3tp(n) is

27/2 1)\ ‘ »
M( H (1——)) :L’(logat)_l/z+()E(:17(10g:17)_'5/”5),

p?
p=1{(mod3)

as r— o0, for any £>0.
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