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Abstract

Let n be a nonnegative integer. An explicit formula is given for the
number of quadruples (1, 9, {3, £4) of triangular numbers such that

no=1 +tg+ 23 + t4).

As a consequence of this formula we deduce that every nonnegative
integer is of the form ) + tg + 2(t3 + ¢4) for some triangular numbers

ty, to, t3, L4.
1. Introduction
Let N ={1,2, 3,..} and Ny = {0, 1, 2, 3, ...}. The triangular numbers
are the nonnegative integers
1
Tk = §k(k+1)’ k € NO,

so that
T{} =0,Tl =1.T2 =3.T3 =6.T4 =10.T5=15.....
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We set
A= {Tk lk € No}.

For n € Ny and m € N we let

8p(n) = card{(ty, ..., t;;) € A" |n =) + -+ 1,},

so that §,,(n) counts the number of representations of n as the sum of m

triangular numbers. It is an easily proved classical result that

85(n) = Z (-};—J, n e Ny, (1.1)

deN
dl4n+1

where d runs through the positive integers dividing 4n + 1 and
+1, ifd =1(mod 4),
(:i) =10, ifd = 0(mod2),
-1, ifd = -1(mod 4),
see for example [4, pp. 77-78]. Similarly
84(n) =o(2n +1), n e Ny, (1.2)

where

Zd, m e N,

o(m) = gm‘

0, m ¢ N,

The result (1.2) was known to Legendre [2]. A proof using modular forms
has been given by Ono, Robins and Wahl [4, pp. 79-80]. An elementary
arithmetic proof has been given by Huard, Ou, Spearman and Williams
[1, pp. 2569-262].

In this paper, we determine
R(n) = card{(t;, to, t3, tg) € A* [n = t; +tg + 2(t3 +t4)} (1.3)

by entirely arithmetic means. We make use of the elementary result (1.1)
as well as the recent elementary identity due to Huard, Ou, Spearman
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and Williams [1, Theorem 1, p. 230], which was used to prove (1.2). This
identity is given in Section 2 as Proposition 1. In Section 3, we prove the

following result.
Theorem. For n € Ny we have

R(n) = % > (- (102,

deN
d|d4n+3

An immediate consequence of this theorem is that every nonnegative
integer is of the form ¢; + ¢y + 2t3 + 2t4 for triangular numbers ¢y, £y, t3, t4.

2. Preliminary Results

The elementary identity of Huard, Ou, Spearman and Williams
[1, Theorem 1, p. 230] mentioned in Section 1 is the following result:

Proposition 1. Let [ : Z* — C be such that

f(a; b, X, y)_f(x’ Y, Q, b): f(_a' —b, X, y)_‘f(xv y, —a, _b)
forall (a, b, x, y) € Z%. Then, for n € N, we have

Z (f(a1brx’_y)_f(a:—b:x»y)+f(a,a_b’x+y:y)

(a.b.x,y)eN4
ax+by=n

~fla,a+b, y-x y)+flb-a,b x,x+y)-fla+b, b x, x-y))
d-1
Z(f{O, n/d, x, d) + f(n/d, 0, d, x) + f(n/d, n/d, d - x, — x)

delN x=1
d|n

- f(x, x - d, n/d, n/d) - f(x, d, 0, n/d) - f(d, %, n/d, 0)).

For x € Z and k € N with & > 2, we let
1, ifk|x,

F, =
k() {o, if k.
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As usual we set

1, if me N,
d(m) = g]elil
0, if m ¢ N.

Taking f(a, b, x, y) = f(a) F5(x) in Proposition 1, where f : Z > C is an
even function, we obtain the following interesting identity.

Proposition 2. Let f : Z +— C be an even function. Then, for n € N,

we have

> (fla-b)-fla+b)

(a,b,x,y)e N4
2ax+by=n

- 31O (o) - dl) - /2 + 3 3 (1+ 5 )r(@)

deN
din
2> (1-2a 4 2 f(a) - Z[Zf(v)] Z[ff(v)].
2deN deN\ p=1 deN\ p=1
d[% d%

Proposition 2 is similar to the following identity of Liouville [3, p.
284).

Proposition 3. Let f : Z — C be an even function. Then, for n € N,

Y. (fla-b)-fla+b)

(a,b,x,y)eN*
ax+by=n
9 d
= f(0)(o(r) - d(m) + Y (1 ~d+ —dﬁj fd)-2) [Z f(v)].
@n @ 07!

Taking f(x) = F4(x) in Proposition 2, and replacing n by 4n + 3, we

obtain, as

Fy(@a-b)- Fyla+d) = (:g), forall a, b e N,
, a

the following result.
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Proposition 4. For n € Ny we have

Z -4 1 -4
—_— = == d - )
i [ab) 4 ¢;\1 ( ( d D
égxﬁéz?xﬁs d|4n+3

3. Proof of Theorem

Let n € Ng. By (1.1) and (1.3) we have

R(n) = Y 85(m)8y(n - 2m). (3.1)

meNg
ms<nf2

Appealing to (1.1) and (3.1), we obtain

-4 -4
R(n) = — — | 3.2
o= >F) > (3 3.2
meNg aeN beN
m<nf2 \aldm+1 bl4(n-2m)+1 g

(j) (i) = (j), forall a,beN,
a b ab

al4m +1, b|4(n - 2m) +1 for some m € Ny with m < n/2

Now

and

& 4n + 3 = 2ax + by, ax = 1(mod 4) for some x, y € N.

Hence (3.2) becomes

R = Y (%} (3.3)

(a.b,x,5)eN*
2ax+by=4n+3
ax=1(mod 4)

Next, we show that

D (%) - 0. (3.4)

(a,b,x, y)eN4
2ax+by=4n+3
ax=3(mod 4)
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Interchanging the roles of @ and x in the sum (3.4), and noting that

3)-G5)-EE)-EE)--G)

we obtain

> (@) X G)- 2 (5

(a.b,x,y)eN* (a.b,x. y)eN? (a,b,x.y)eN4
2ax+by=4n+3 2ax+by=4n+3 2ax+by=4n+3
ax=3(mod 4) ax=3(mod 4) axu3(mod 4)

from which (3.4) follows. Adding (3.4) to (3.1), we obtain

Rn)= Y [—;%] (3.5)

(a.b, x, y}eN4
2ax+by=4n+3
ax=1(mod 2)

T Saemen. hied (i] =0 86
ab

Rn) = Y (ﬁ] 3.6)

{a,b,x.y]eN"
2ax+by=4n+3
x=l(mod2) -

Next, we show that

Y (ﬁ) - 0. G.7

(a.b,:c.y}e!\l‘i
2ax+by=4n+3
x=0(mod 2)

Interchanging the roles of b and y in the sum in (3.7), and noting that

(-4 (2)E)- 6 -6

we obtain

—4 -4 -4
> @z B 2 5
(a,b. I.J]EN4 4 (a,b,x, y)EN4 Y (a.b. Jx:._‘.-')elfﬁ4

2ax +by=4n+3 2ax+by=4n+3 2ax +by=4n+3
x=0(mod 2) x=0(mod 2) x=0(mod 2)
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from which (3.7) follows. Adding (3.6) and (3.7), we obtain

R(n) = Z (ig] (3.8)

{mhmykN4
2ax+by=4n+3

Appealing to Proposition 4, (3.8) yields

-4 3 (o)

dldn+3
The theorem now follows as (_?4] = (- 1)(d_1)/ 2 for d odd.

Forodd d € N we have
d-(-1)9V2 54 _150.

Hence for n € Ny we deduce that

o 4 _(~1)d-D/2 “
R(n)—z Z (d-(-1) )+n+120+0+1=1.

deN
d|dn+3
d<4n+3

This shows that every nonnegative integer is of the form ¢ + 1ty +

2(t3 +t4) for some triangular numbers {1, 1o, t3, i4.

For example, with n = 6 we have

R(6) = % > - 1)@-1/2y _ %(0 +4+8+28) = 10.

deN
d|27

The 10 representations (t;, g, 3, t4) € A' in 6 = t; + 1ty + 2(t3 +t4) are
(1, tg, t3, t4) = (0, 0, 0, 3), (0, 0, 3, 0), (0, 6,0,0), (1,1, 1,1),(1, 3,0, 1),

(1,81,0),(,1,0,1),(31,1,0),(3, 3 0,0), (6, 0, 0, 0).
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