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Dynamic Quantizer Design for Hidden Markov
State Estimation Via Multiple Sensors

With Fusion Center Feedback
Minyi Huang, Member, IEEE, and Subhrakanti Dey, Senior Member, IEEE

Abstract—This paper considers the state estimation of hidden
Markov models by sensor networks. The objective is to minimize
the long term average of the mean square estimation error for the
underlying finite state Markov chain. By employing feedback from
the fusion center, a dynamic quantization scheme for the sensor
nodes is proposed and analyzed by a stochastic control approach.
Dynamic rate allocation is also considered when the sensor nodes
generate mode dependent measurements.

Index Terms—Dynamic programming equation, dynamic quan-
tization, hidden Markov models, sensor networks, state estimation.

I. INTRODUCTION

SENSOR networks have gained intensive research interest
due to their wide range of current and potential applications

in environment surveillance, detection and estimation, and loca-
tion awareness services, etc. [7]. While completely distributed
computation is possible in sensor networks where sensors com-
municate with each other [20], there is an alternative framework
that has been well researched and is adopted as the sensor net-
work infrastructure in this paper. In such networks, geographi-
cally distributed sensors send data to a fusion center (FC) (rather
than communicating with each other), which is assumed to have
a higher computation capability than the sensors themselves.
Due to their limited on board battery power the sensors not only
have little computational capacity but also possess limited com-
munication capability as data processing and transmission both
require energy, the energy required for data transmission usu-
ally being the dominant component. The channel between each
sensor and the fusion center is usually bandwidth limited (e.g.,
a wireless link), and hence only a quantized output can be trans-
mitted where the number of quantization levels is limited by the
data rate constraints of the channel. The fusion center combines
the data received from all sensors to make a decision or form
an estimate of the observed process. In general, the information
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that can be obtained from a single sensor is limited. However,
when a set of sensors is used, it is possible to achieve a satisfac-
tory performance [28], [6].

Sensor networks have been studied in different contexts ac-
cording to their application backgrounds. Within the context of
statistical signal processing, an important application of sensor
networks is state estimation of random processes, since in reality
sensor networks operate in a time-varying environment and the
resulting sensor measurements provide partial information only
of such random processes usually modeled by dynamical sys-
tems [11]. For instance, the sensors may have noisy observation
of a moving target in a battlefield, or changing temperature in a
bushfire prone area, and so on. In certain applications of interest,
the underlying random process may be modeled as a Markov
chain (e.g., the maneuvering modes of a target, the protein levels
in blood cells, etc.) and the resulting measurements modeled by
hidden Markov chains. (See [26] for near-optimal quantizer de-
sign for hidden binary Markov chains for a single sensor, and
for an extension to the two-sensor case, see [8]. Also, see [13]
for a multiple sensor scheduling solution using hidden Markov
models. Interested readers are also referred to [5], which deals
with reconstructing centralized optimal estimates at the fusion
center for Markov processes using locally sufficient statistics
calculated by distributed stations. However, data rate constraints
are not considered in [5]).

In general the design of optimal quantizer problem for sensor
networks is not a trivial task even when the Markov chain has
only a few states. This may be attributed to the high complexity
in the associated nonconvex optimization problems. In the
context of Neyman–Pearson distributed detection, the problem
of locally optimal threshold selection for the sensor quantizers
is addressed in [22]. For the distributed estimation of a single
random variable, the Lloyd-Max algorithm may be employed
for optimization of the quantizer with local optimality [12].
See also [26] and [8] for quantizer design algorithms with
information theoretic optimality criteria.

In this paper we consider the estimation of finite state Markov
chains via sensor networks where sensors send quantized mea-
surements to a fusion center. For computational tractability, we
start by analyzing binary quantization at the sensor nodes and
later consider sensors with variable rates where some sensors
may be allowed to have higher rates than one bit per symbol.
In general, a binary quantization scheme can only transmit very
coarse information, and traditionally the network performance
is improved by increasing the number of sensors. There has
been an extensive literature on binary sensors in the context of
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hypothesis testing (see [6], [16], [23], and references therein).
Recent applications of binary sensors for target tracking can
be found in [3] and [19]. In fact, binary sensors are useful for
tracking partial motion information such as directional infor-
mation of a moving object, or the change trend (increase or de-
crease) of certain natural phenomena (see, e.g., [3]). (For op-
timum local decision space partitioning for multibit decision
values, see [15].)

In this paper, instead of improving the estimation by in-
creasing the number of sensors, we will adopt another approach
by establishing a feedback scheme from the fusion center to
the sensors so that a certain coordination of the sensors may be
maintained. The consequence of the feedback is that the usual
static quantization scheme is then replaced by a dynamic one.
Concerning the communication and computational capability
in such a sensor network, we make a few basic assumptions.
First, we assume that the quantized output at each sensor node
can be sent to the fusion center without any error. In prac-
tice, such error-free transmission of a finite symbol set over
a wireless channel may be achieved with use of appropriate
error control coding schemes. Second, we do not impose any
constraint on the computational capability of the fusion center.
We also assume that the feedback channels between the fusion
center and the sensors allow error-free transmission of the
computed quantizer parameters. Notice that in such a network
infrastructure, there is no direct communication between any
two-sensor nodes. Evidently, in this paper the communication
pattern between the fusion center and the sensors is more
complicated compared to unidirectional sensor networks.
However, this approach has the potential to reduce the network
complexity from another point of view, i.e., in order to achieve
a prescribed performance, one only needs to implement fewer
sensor nodes compared to the case without feedback. This
kind of feedback information pattern has been employed for
performance improvement in the sensor network literature, but
mainly in the context of hypothesis testing [21], [1], [25], [27],
and is referred to as decision feedback. There is an underlying
assumption here that the fusion center has sufficient power at
its disposal in contrast to the sensor nodes which have limited
energy that cannot perhaps be replenished. This allows us to
employ dynamic feedback from the fusion center and reduce
the number of static sensors (with static quantizers without
dynamic feedback from the fusion center) required to achieve
a comparable performance. This clearly results in less total
energy consumption at the sensor nodes and also reduced
bandwidth demand on the multiaccess wireless network in
communicating information to the fusion center.

The main contributions of this paper can be summarized as
follows.

1) We develop a conceptual framework for dynamic opti-
mization for quantizer design using a stochastic control
framework for state estimation of Markov sources ob-
served through noisy quantized measurements via a
network of sensors. We believe that this paper is the first
attempt in considering dynamic optimal quantizer design
using a stochastic control approach for the purpose of state
estimation for hidden Markov models. We further show
that there is a systematic way to construct a numerical

method for computation of the quantization scheme, which
avoids sample path dependent simulations.

2) Due to the nonconvex nature of the above optimization
problem, we design a suboptimal algorithm based on a
Markov decision process (MDP) approach where the quan-
tizer thresholds belong to a finite set of discrete values. A
relative value iteration method is then applied to solve a
discretized version of the Bellman equation for the original
problem where quantizer thresholds are allowed to assume
any real value.

3) In addition, we consider situations where the multiple
sensor measurements may be mode dependent, e.g., de-
pendent on the location of a moving object or actions of a
maneuvering target. These situations demand that different
sensors are allocated different data rates with a constraint
on the total data rate, such that sensor measurements
containing more information are given higher resolution.
Using a stochastic control framework, we design and
analyze a novel efficient integrated dynamic quantization
and data rate allocation algorithm for multiple sensors
providing mode dependent noisy quantized measurements.

4) Finally, through computer simulation studies, we illustrate
the superior performance of our algorithms implementing
dynamic quantization over those with static quantizers.

The rest of paper is organized as follows. Section II for-
mulates the state estimation problem within the framework of
hidden Markov models with quantized output. In Section III, an
equivalent completely observable stochastic control problem
is formulated by applying the so-called information state
based approach. The dynamic programming equation for the
resulting stochastic control problem is studied in Section III. In
Section IV a joint dynamic rate allocation and quantizer design
method is analyzed for a mode dependent model as motivated
by various application scenarios such as tracking maneuvering
targets by multiple sensors. Section V presents numerical
results and illustrates the performance improvement achieved
by our novel dynamic quantization algorithm. Section VI
concludes the paper.

II. SYSTEM MODEL

Let be a discrete time Markov chain with state
space and transition matrix

...
...

where . Assume
without loss of generality that . Let the measure-
ment of the sensors be specified by

(2.1)

A similar model for a two state Markov chain with one sensor
has been studied in [26] and performance analysis is based upon
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static quantization with different quantization levels. Write (2.1)
in the vector form

(2.2)

where , and
. The noise is a sequence of

independent and identically distributed (i.i.d.) vector random
variables.

For a set of binary sensors, any given quantiza-
tion scheme is specified by sequences of constants

, where is used to parti-
tion the range space of measured by the th sensor node.
Let , and write the quantization sequence

. At time , let the data
(also to be called message) that the fusion center receives from
the th sensor be denoted by . One may take any two dis-
tinct symbols and such that the events and

are equivalent to and ,
respectively. Hence, the received message at the fusion center is

(2.3)

Let and denote by

(2.4)

where the map is determined
from (2.3) in an obvious manner. Here denotes the

-fold Cartesian product of the set , the common code
book for all sensor nodes.

The objective of this paper is to dynamically obtain
by optimizing an appropriate cost crite-

rion at the fusion center, based on the measurements
received from the sensors.

The optimal quantization levels are then sent back to the
sensors via feedback channels to be used for quantizing the
measurements at the next time instant . This scheme is shown
in Fig. 1 where all the relevant communication flows are la-
belled. In the next section, we formulate this problem formally
as a stochastic optimal control problem.

III. BELLMAN DYNAMIC SENSOR OPTIMIZATION

The dynamic quantization problem may be regarded as a gen-
eralized stochastic control problem in which affects the ob-
servation at the fusion center, but the state variable is au-
tonomous. Since the fusion center is generally equipped with
a high computational capability and data storage capacity, we
assume the parameters , are computed at the fusion
center as a function of . In other words,

is adapted to which is the -al-
gebra generated by the past observations and controls. In fur-
ther analysis, a recursively calculated sufficient statistic shall be
identified such that need not be determined using the overall

Fig. 1. Dynamic quantization scheme with feedback from fusion center.

history when the sufficient statistic is
computed at each step. Once is computed, the entry
is sent from the fusion center to the th sensor. Here, to en-
sure causality, it is important to require that depends on the
quantized measurements up until time so that it can be
determined in the epoch between and . In this frame-
work, the decentralized nature of the network is preserved in the
sense that the data is preprocessed at the sensor node level based
upon which the fusion center forms a final estimate, and no di-
rect communication exists between the sensors except that each
sensor receives feedback commands from the fusion center.

Define the so-called information state [14]

The component provides a measure of likelihood of
staying at the state given the measurements . By
the Bayesian rule, is recursively given as

(3.1)

where is the transition probability matrix of is a nor-
malizing factor such that , and

(3.2)

Note that

(3.3)

where
for is the

joint probability density for , and is
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defined in (2.4). For example, in the special case of two sensors,
, then

etc., where corresponds to a specific outcome of and
determines a specific integration region.

Given , the conditional expectation of is

(3.4)

In fact, for any given quantization sequence

where is any random variable adapted to .
For each sequence , the long term average of the

mean square error for the state estimation is given as

(3.5)

where the sequence is simply indicated as and
is taken as the conditional expectation in (3.4). In subsequent
analysis we may also use to denote a vector in . In this
paper, we use the norm for .

Now, define the conditional cost

which is computed by (3.4). In the special case of
.

The optimal estimation problem associated with (3.5) may be
equivalently expressed as

(3.6)

where is the initial condition and denotes the quantization
sequence such that each is adapted to .
Notice that the fusion center cannot directly minimize the cost
(3.5) since it does not have exact knowledge of . However, it
can solve the problem since may be recursively computed
using . Indeed, is an infinite horizon average cost
based stochastic control problem, and its associated dynamic
programming (Bellman) equation is given as

(3.7)

where and
. The function will be

called as the differential cost. Define the simplex

Theorem 3.1: Assume there exist and a bounded func-
tion , satisfying (3.7), and there is a measurable
function , such that .
Then the quantization with , minimizes the
cost in (3.6) with the optimal cost .

Remark: The theorem is essentially an adaptation of the stan-
dard verification theorem for optimal Markov decision problems
with Borel state spaces. Notice that in Theorem 3.1,
may be chosen as any fixed constant and it does not affect the
optimal cost. Existence of a solution to (3.7) is insured based
upon mild conditions in terms of its exponentially discounted
version; (see, e.g., [9]).

In the case the quantization is static, the resulting cost may
be specified as follows:

(3.8)

with , which is of a degenerate form of (3.7)
since the domain for is now a singleton. Equation (3.8) is
useful for the performance calculation of any static binary
quantizer.

Remark: Theorem 3.1 and the associated numerical scheme
in the following Section III may be easily generalized to the
case of more than two quantization levels. We will not repeat
the details.

From a numerical computational point of view, a solution to
(3.7), if existing, is difficult to solve since for a fixed , the
right-hand side of (3.7) is a nonconvex function of the contin-
uous variable . For numerical tractability, instead of
achieving an arbitrary approximation to the optimal solution, in
this section a variant of the problem is considered where
is restricted to a finite setof discrete values. The following steps
are carried out.

a) Choose a finite subset in as the range space of .
b) As a suboptimal approximation to , discretize the

information state and derive a finite dimensional equation
which, in fact, corresponds to a well defined optimal
Markov decision problem with finite states and finite
control actions. Such a discretized Bellman equation is
intended to specify a suboptimal solution to the problem

.
c) Solve the fully discretized Bellman equation by the rela-

tive value iteration algorithm [4].
For notational and computational simplicity, the same finite

subset of is employed for optimizing each entry in
. Now, let the range space of be
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. Hence, shall be chosen from the product
set . Write the corresponding Bellman equation as

(3.9)
We will establish the solvability of the Bellman equation

(3.9). Let us introduce the following assumption.
H1): For any and , the matrix

is nonsingular and strictly positive.
Notice that H1) holds under very mild conditions for the

noise. For the example of for two sensors, H1) holds
for nonsingular and positive and any i.i.d. noise sequence

such that for any , each of the four
events

has strictly positive
probability, where and . This
criterion is obviously satisfied for any nondegenerate bivariate
Gaussian noise distribution.

Proposition 3.2: Under H1), there exist and a bounded
function satisfying (3.9).

Proof: See the Appendix.
Remark: By the verification theorem [9], the constant spec-

ified in Proposition 3.2 may be interpreted as the minimum for
in (3.5) when each is restricted to be in and adapted

to (i.e., it depends on ).
In Proposition 3.2, H1) may be relaxed such that

is only primitive (see, e.g., [24]) and nonsingular [9] for any
and . The details are omitted here.

Now we devise a scheme for a numerical solution to (3.9).
For notational simplicity, the numerical procedure for solving
(3.9) is described for the case of , i.e., . The
same procedure can be employed for the case . Taking

, let the range space of be discretized with a step size
. Let . Take

for the left-hand side of (3.9). However, due to the
linear transformation and normalization inside the function ,
the right-hand side of (3.9) involves values of at points outside

. Hence, this cannot induce an equation only in terms of
values of on the grid . To overcome this difficulty, we
consider an approximation by rounding off to
the closest point in , and then we simply replace
by . This procedure leads to a fully discretized equation,
as follows:

(3.10)

where represents a discretized approximation of
, and for

with

Thus, the continuum information state is approximated
by a certain point .

Remark: Note that the exact choice of the discretization step
size is rather empirical. In general, it is difficult to get an
explicit relationship between the approximation error (due to
discretization) and the step size. Here, we choose to be
much smaller compared to the magnitude of and .

The following proposition is useful for guaranteeing conver-
gence of the iterative discretized numerical scheme to be intro-
duced later.

Proposition 3.3: For any , we have

(3.11)

Proof: See the Appendix.
We observe that for a fixed the summation on the

right-hand side of (3.10) involves the value of at points
(derived from the rounding off procedure

with different values for ), each associated with a weight co-
efficient , depending on and satisfying
by Proposition 3.3. Hence, (3.10) is equivalent to the Bellman
equation for a standard finite state Markov decision problem
where constitute the nonzero entries in the th
row of the dimensional controlled transition
probability matrix. Notice that the equivalent Markov decision
problem has the state space . And therefore, (3.10) can be
solved by the relative value iteration method which converges
to its exact solution (see [4] for details).

In summary, the fusion center, after obtaining , com-
putes the information state and then translates it into a value
for which has been computed offline as a function of
using the relative value iteration algorithm implemented for the
discretized Bellman equation (3.10). These new quantization
threshold values are then communicated back to the sensors.

IV. GENERALIZATION TO VARIABLE SENSOR RATES

In this section, we consider situations where the observations
of the sensor nodes are mode dependent. This mode could rep-
resent a specific location of a moving object or a maneuvering
mode of a moving target. Within this modeling paradigm it is of
interest to consider dynamic (variable) rate allocation under the
condition that the total rate of the sensors is constrained due to
the shared communication channel. The intuitive justification of
dynamic rate allocation with the mode dependent observations
is that at time , if it is inferred by the fusion center from pos-
terior information that the system is more likely to be operating
in mode for which a certain sensor has a higher mea-
surement gain, then that sensor should be assigned more rate
for refined estimates, and that the consequently reduced rates
for other sensors should result in far less performance loss since
their observations are less useful due to their low signal to noise
ratios. The main idea for dynamic rate allocation is that one may
choose the quantization parameters such that the cor-
responding partition at the sensors does not produce a total rate
(or total number of quantization levels) exceeding a specified
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number, and it is allowed to split the number of quantization
levels unevenly at the sensors.

Motivated by the above, we consider the following (some-
what simplified) system model:

(4.1)

where

for which has state space . The i.i.d.
noise sequence has a probability density . In-
deed, the above modeling of may be regarded as a simplified
discrete approximation of the hybrid continuum modeling of the
target state in the tracking literature (see [17] and [18]). Here,
models the multiple modes which affect the measurement SNR.

For notational simplicity, in the following formulation a
system of two sensors is analyzed where and have
state space and , respectively.
The generalization to the case of more states is obvious.
Denote the transition matrix of by ,
and let the transition matrix of given be given as

.
The quantization scheme consists of one binary sensor

with symbol set , and a ternary one with symbol
set . Hence, the total number of quantization
levels is 5. Furthermore, let the parameter for the bi-
nary sensor be chosen from the set .
The ternary quantizer is specified by a pair in the set

. Now any quantizer, denoted
simply as , at time may be represented as
with the first sensor being binary, or with the
second being binary. Hence, an admissible quantizer is
an entry in the union of
two sets, each being an ordered Cartesian product. For in-
stance, is in where
and . Once is selected, the message

received by the fusion center is an entry in
. As in

Section II, denote the quantizer output by .
For the estimation of , the cost is specified by the

weighted mean-square error

where . Define the information state
where

. Here, denotes the
quantized output of the sensors. Define

which is the transition probability matrix of the joint Markov
process . Let

where

with . The re-
cursion for the information state is

where . The conditional cost is

As in Section III, the Bellman equation may be written in the
following form:

(4.2)

where . Furthermore, the analysis
as well as the numerical scheme in previous sections can be
extended to accommodate (4.2) in a straightforward manner.
The details will not be repeated here.

V. SIMULATION STUDIES

In this section, we present three different simulation experi-
ments to illustrate the performance of our algorithms presented
in Sections III and IV.

A. Estimating a Two State Markov Chain Via Two Sensors

In these simulations, the Markov chain has two states
and . The transition matrix for is

and the two noise components are independent and Gaussian
with .

For the two state case, we have with
. The differential cost is parametrized in terms of

and denoted as . The step size is taken
for discretization of . The set
is used in the (3.10). The pair is computed using the rela-
tive value iteration algorithm by 20 iterates. This algorithm es-
sentially is a variation of the standard value iteration method.
However, the iterates obtained by the relative value iteration
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Fig. 2. Iteration for h; each slice corresponds to the curve of h at a fixed iterate.

method are bounded and they converge under a relaxed version
of H1), which requires to be primitive. (For details on
the implementation of this algorithm, see ([4], pp. 320–321).)
Fig. 2 shows the convergence of the differential cost. The op-
timal cost converges to 0.11996 as shown in Fig. 3(a).

The cost for static quantizers is computed where the quantizer
thresholds for the two sensors are parametrized by a common
scalar parameter . The associated
costs for different are displayed in Fig. 3(b). For comparison,
the solid line indicates the optimal cost 0.11996 for the dynamic
quantization.

B. Tracking Multiple-State Slow Markov Chains

1) Single Sensor Estimation: In this example only a single
sensor is employed for estimating a slow Markov chain with
measurement . With the quantization parameter

, the output is: if , and if .
Here the i.i.d. Gaussian noise has variance . has three
states and transition matrix

We compute the different cases for the binary and ternary
quantizers, and in Table I the cost for each scenario refers to
the long term average of the mean square estimation error for
the associated quantizer.

For the static binary quantizers with chosen from
(with step size 0.1), the lowest attain-

able cost is listed in Table I with the associated value for . It is
shown when the noise variance decreases, the relative improve-
ment in performance by dynamic quantization increases.

We also give the cost for a static ternary quantizer which par-
titions the range space of the observations by a pair of param-
eters and , each of which corresponds to
the midpoint of two adjacent states of the Markov chain. It is
seen that in the case , the cost for the dynamic binary
quantizer is nearly twice and four times of that for the static

Fig. 3. (a) Convergence of the cost during iteration to 0.11996; (b) the lowest
cost attained by static quantization in L is 0.129144 with r = 0:8 for two
sensors.

TABLE I
COSTS COMPUTED BY 50 ITERATES

ternary quantizer and the unquantized case, respectively. An in-
tuitive interpretation for the difference between the costs is that
when the binary quantizer is employed, the residual uncertainty
associated with the state of the Markov chain is higher. For ex-
ample, when the fusion center receives a symbol for the event

(assuming is used by the dynamic binary
quantizer for that time instant), neither nor can
be asserted with a high likelihood as the true state by using that
received symbol alone.

The fourth and fifth columns in Table I compare the perfor-
mance improvement for the ternary quantizer due to dynamic
quantization.
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TABLE II
SIMULATION FOR THE MEAN-SQUARE ESTIMATION ERROR

The last column gives the mean square estimation error
without quantization, which may be numerically computed by
taking dense partition for the measurement variable in the
associated Bellman equation. In fact, on the subset
of the range space of , we take a dense grid of step size 0.1,
and use a sparser partition in the rest part. A total number of 95
points is placed in the interval .

In Table II, we compute the long term average of the mean
square error in state estimation without quantization by Monte
Carlo simulations. The state estimates are obtained by an ob-
servation sequence of with steps via the standard recur-
sive algorithm for conditional probability estimates. The mean
square error is computed by averaging on 30 runs of the simu-
lation. The second column illustrates the relative error

% between the simulation based cost (denoted
as ) and the relative value iteration based one (denoted as

) as given in the last column in Table I which utilizes a dense
partition to approximate an analogous observation scheme. It is
clearly seen that the results obtained by these two methods are
consistent. The additional advantage of the (relative) value iter-
ation approach is that its result does not depend on sample paths.

We briefly summarize the numerical findings for this single
sensor tracking problem. Overall, dynamic quantization leads to
considerable performance improvement. As the noise variance
decreases, the absolute estimation error consistently decreases
for both static and dynamic quantization. However, with a lower
noise level, dynamic quantization yields an even higher relative
improvement, and an intuitive interpretation is that under such a
condition the fusion center can better extract information from
the sensor messages and hence more effectively guide the quan-
tization threshold setting at the sensor nodes.

In addition, the increase (for instance, from binary to ternary)
of the number of quantization levels can efficiently reduce the
estimation error. However, this is at the expense of the scarce
sensor data rate.

2) Multiple-Sensor Estimation: Now we consider multiple
sensors for state estimation. Our purpose is to study the perfor-
mance improvement either by increasing the number of sensors
or by employing dynamic quantization, and compare the dif-
ference between these two means. The underlying three state
Markov chain is the same as in Section V-B-1. The mea-
surement noise for all sensors are i.i.d. Gaussian with variance

, regardless of the number of sensors.
First we consider two sensors with static binary quantization.

For a heterogeneous quantization scheme using for the
first sensor and for the second sensor, the obtained
cost is 0.151516. With a homogeneous quantization where the
parameters and take identical values, the lowest cost is

0.143506 attained at which is selected from
the set . By dynamic binary quantization,
the optimal cost is 0.115081 for which the two quantizers are
optimized using the set with a step size 0.2.

As shown by the fifth column in Table I, a single dynamic
ternary sensor has a slightly better performance than two static
binary sensors, where the former and the latter require to
transmit three and four symbols, respectively, in the process of
estimation.

For three static homogeneous sensors, the lowest cost
0.09553 is attained at , which is selected
from the set with a step size 0.1.

It is seen that the performance of two dynamic binary sensors
is comparable to that of three static binary sensors. The latter
performs slightly better; however, this is at the cost of a higher
total rate (associated with six symbols) for the sensors. This
kind of higher rate requirement is usually demanding under low-
power conditions for the wireless link from sensors to the fusion
center.

Note that in this paper, we do not explicitly address energy
budget issues at the sensor nodes. The implementation of a
dynamic feedback scheme from the fusion center reduces the
number of sensor nodes required, thus reducing energy and
bandwidth requirement at the sensor nodes which is crucial.
The fusion center is assumed to have an energy supply that
is sufficient to allow frequent feedback communication to the
sensor nodes.

C. State Estimation for Mode-Dependent Systems

In these simulations we consider the mode-depen-
dent system model given by (4.1), where and have
two and three states, respectively. The system is spec-
ified as follows: , and

. The
transition matrices for and are given by

The weight . Let and
, where and

. The noise sequences for all sensors are
i.i.d. Gaussian with covariance .

In the rate allocation problem, the quantizer is optimized
using . The optimal cost is
computed as using a step size of 0.05 for the
information state in 30 iterations.

For comparison, an optimal dynamic quantization without
rate allocation is also computed and the quantizer is optimized
using , where the first sensor is always binary. The re-
sulting optimal cost is which is clearly suboptimal.
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VI. CONCLUSION

This paper considers dynamic quantization and rate alloca-
tion problems in a sensor network with a fusion center where
the sensors provide noisy quantized measurements of the state
of a source modeled by a finite state Markov chain. A stochastic
control approach is used to design the quantizer thresholds and
the optimal data rates, which leads to the minimization of the
long term average of the mean square estimation error for the
underlying Markov chain. The optimization of the network per-
formance is achieved by feedback from the fusion center to the
sensor nodes. This is a potentially useful infrastructure for the
sensors to adapt better to their operating environment. Within
the stochastic control framework, the quantizer and the asso-
ciated cost may be computed by iterative algorithms associated
with the well-known MDP framework. The system performance
improvements resulting from dynamic quantization and rate al-
location are illustrated through simulation studies.

In this paper, the advantage of feedback is numerically
demonstrated in networks with a relatively small number of
nodes, and this further suggests the potential of reducing the
sensor number by dynamic quantization. For future research, it
is of interest to study, analytically or by use of simulations, for
achieving a prescribed performance in a large sensor network
monitoring certain dynamic activities, to what extent the sensor
number may be reduced by fusion center feedback.

APPENDIX

A. Proof of Proposition 3.2

Under H1), for any sequence taking values in
, the exponential stability of the (3.1) holds with regard to

initial conditions, i.e., there exist and , both
independent of , such that

(A1)

where and are two solutions to (3.1) with different initial
conditions and , respectively (see, e.g., [2]).

Since is continuously differentiable with respect to , its
first order derivative is bounded on the compact set

which implies is Lipschitz continuous on , i.e., there
exists such that for all

(A2)

We define the infinite horizon discounted optimal cost
where .

By use of (A1) and (A2), for any we apply a compar-
ison technique as in [10] to obtain

(A3)

which implies equicontinuity (in ) of w.r.t. all
, and also the uniform boundedness of the difference

term with regard to all and .
Hence, it follows from the standard results in [9] that (3.9) has
a bounded solution and the associated .

B. Proof of Proposition 3.3

Recall that . Note also
that , for any two entry-wise nonnegative
vectors and . Hence, for

(A4)

where all involved vectors and matrices have nonnegative en-
tries.

On the other hand, by (3.2) and (3.3) it follows that

which combined with (A4) gives

(A5)

since . This completes the proof.
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