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LARGE-POPULATION LQG GAMES INVOLVING A MAJOR
PLAYER: THE NASH CERTAINTY EQUIVALENCE PRINCIPLE∗
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Abstract. We consider linear-quadratic-Gaussian (LQG) games with a major player and a large
number of minor players. The major player has a significant influence on others. The minor players
individually have negligible impact, but they collectively contribute mean field coupling terms in the
individual dynamics and costs. To overcome the dimensionality difficulty and obtain decentralized
strategies, the so-called Nash certainty equivalence methodology is applied. The control synthesis
is preceded by a state space augmentation via a set of aggregate quantities giving the mean field
approximation. Subsequently, within the population limit the LQG game is decomposed into a family
of limiting two-player games as each is locally seen by a representative minor player. Next, when
solving these limiting two-player games, we impose certain interaction consistency conditions such
that the aggregate quantities initially assumed coincide with the ones replicated by the closed loop
of a large number of minor players. This procedure leads to a set of decentralized strategies for the
original LQG game, which is an ε-Nash equilibrium.
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1. Introduction. In the 1940s, John von Neumann and Oskar Morgenstern en-
visioned the perspective of games with a large number of players [34, pp. 12–15], and
since then there has accumulated a vast literature on such large population game the-
oretic models. Within the context of noncooperative game theory, large population
models have been well studied in economics, social science, biological science, and
engineering (see [5, 6, 10, 13, 19, 25, 30] and the survey [24]). In these areas, of par-
ticular interest is the class of games in which each player interacts with the average
effect of many others and individually has negligible effect on the overall population.
Such an interaction pattern may be modeled by mean field coupling, and it has nat-
urally arisen in economics, engineering, and public health research [25, 10, 19, 5, 6].
While these models enjoy conceptual simplicity and capture key features of interac-
tion of agents, they also impose a great challenge on analysis due to the complexity
in optimizing the strategies of agents, especially in dynamic models.

For large population dynamic games, it is unrealistic for a player to collect detailed
state information about all other players, and a central issue is the development of
low complexity solutions so that each player may implement a strategy based on
local information. For models with mean field coupling, recent advances have been
made in effectively addressing the complexity issue. In [19, 21, 22, 20], the so-called
Nash certainty equivalence (NCE) methodology has been developed, where the key
idea is to break the large population game into localized optimal control problems
via specifying a consistency relationship between the individual strategies and the
aggregate population effect. A very appealing feature of the resulting solution, as

∗Received by the editors September 15, 2008; accepted for publication (in revised form) October
12, 2009; published electronically January 29, 2010. This work was partially supported by a Discovery
Grant of the Natural Sciences and Engineering Research Council (NSERC) of Canada.

http://www.siam.org/journals/sicon/48-5/73537.html
†School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada

(mhuang@math.carleton.ca).

3318



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LQG GAMES INVOLVING A MAJOR PLAYER 3319

an asymptotic Nash equilibrium, is that each agent’s strategy depends only on its
own state and some deterministic quantities which may be calculated off-line. This
optimization methodology has inherent connections with statistical physics when one
is studying a large number of interacting particles, and a more detailed discussion is
given in [22]. A closely related approach for mean field games has been independently
developed by Lasry and Lions [26, 27, 28]. For models with many firm dynamics,
Weintraub, Benkard, and Von Roy considered decentralized strategies and proposed
the notion of oblivious equilibria via a mean field approximation [35, 36].

In contrast to [19, 21, 20], where all agents are comparably small and may be
regarded as peers, this paper investigates a stochastic dynamic game model with a
different interaction pattern. The class of games considered here involves a major
player and many minor players. The major player has a significant role in affecting
others, but each minor player possesses only a weak influence. This kind of interaction
modeling is motivated by many socio-economic problems. A typical situation is the
interaction within one or more large corporations and many, much smaller, competi-
tors (see, e.g., [1]). Traditionally, models differentiating the strength of players have
been well studied in cooperative game theory, and they are customarily called mixed
games, with the players accordingly called mixed players; the reader is referred to
[31, 11, 15, 18, 32, 17] for historical background. For noncooperative games with a
large player and many small players, the work [14] examined the notion of negligibility
of small players. In this paper, we will adopt a population of mixed players for the
development of noncooperative stochastic dynamic games.

1.1. The mean field stochastic dynamic game model. We consider the
linear-quadratic-Gaussian (LQG) game with a major player A0 and a population of
minor players {Ai, 1 ≤ i ≤ N}. In our exposition, the terms “player” and “agent”
will be used interchangeably. At time t ≥ 0, the states of A0 and Ai are, respectively,
denoted by x0(t) and xi(t), 1 ≤ i ≤ N . Let (Ω,F ,Ft, t ≥ 0, P ) be the underlying
filtration. The dynamics of the N+1 agents are given by a system of linear stochastic
differential equations (SDEs) with mean field coupling:

dx0(t) =[A0x0(t) +B0u0(t) + F0x
(N)(t)]dt +D0dW0(t), t ≥ 0,

(1.1)

dxi(t) =
[
A(θi)xi(t) +Bui(t) + Fx(N)(t) +Gx0(t)

]
dt+DdWi(t), 1 ≤ i ≤ N,

(1.2)

where x(N) = (1/N)
∑N

i=1 xi is the average state of the minor players. The initial
states are measurable on F0 and are given, respectively, by x0(0) and xi(0), 1 ≤ i ≤ N ,
each with a finite second moment. A simple choice of Ft is to take it as the σ-algebra

Fx�(0),W�
t � σ(xj(0),Wj(τ), 0 ≤ j ≤ N, τ ≤ t). At the right-hand side of (1.2),

the state x0 has a constant coefficient G, while each xj as a component in x(N),
0 < j �= i, is associated with a factor 1/N . This modeling feature indicates that A0

has a significant influence on others while, in contrast, each minor player has only a
negligible impact on others for large N . Our modeling may be generalized to the case
of multiple major players, but for simplicity of analysis we will focus on the model
with only one major player.

The states x0, xi and controls u0, ui are, respectively, n and n1 dimensional vec-
tors. The noise processes W0, Wi are n2 dimensional independent standard Brownian
motions adapted to Ft, which are also independent of the initial states (xj(0), 0 ≤
j ≤ N). The deterministic constant matrices A0, B0, F0, D0, A(·), B, F , G, and D
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all have compatible dimensions. The number θi is a dynamic parameter associated
with agent Ai. The variability of the parameter θi is used to model a heterogeneous
population of minor players. Notice that in (1.2) we take only A(·) to be dependent
on θi for the purpose of notational simplicity. When other matrix parameters for Ai

also depend on θi, the analysis is similar and will not be given in detail. We assume
θi takes values from the finite set Θ = {1, . . . ,K} so that there are K types of minor
players. If θi = k, Ai is called a k-type minor player. From now on, for notational
brevity the time argument for a process (x0, xi, etc.) will often be suppressed when
the value of that process at time t is used.

For 0 ≤ j ≤ N , denote u−j = (u0, . . . , uj−1, uj+1, . . . , uN ). The cost function for
A0 is given by

J0(u0(·), u−0(·))

= E

∫ ∞

0

e−ρt
{[

x0 − Φ(x(N))
]T

Q0

[
x0 − Φ(x(N))

]
+ uT

0 R0u0

}
dt,(1.3)

where Φ(x(N)) = H0x
(N) + η0 and the constant ρ > 0 is a discount factor. The cost

function for Ai, 1 ≤ i ≤ N , is given by

Ji(ui(·), u−i(·))

= E

∫ ∞

0

e−ρt
{[

xi −Ψ(x0, x
(N))

]T
Q
[
xi −Ψ(x0, x

(N))
]
+ uT

i Rui

}
dt,(1.4)

where Ψ(x0, x
(N)) = Hx0 + Ĥx(N) + η. In (1.3)–(1.4), all the deterministic constant

matrices or vectors H0, H , Ĥ , Q0 ≥ 0, Q ≥ 0, R0 > 0, R > 0, η0, and η have
compatible dimensions. Parallel to (1.2), the cost (1.4) contains the term Hx0 to
capture the strong influence of the major player.

In this paper, we are interested in the asymptotic analysis when N increases
towards infinity. This is essentially to consider a family of games with an increasing
number of minor players. For the large population modeling of the minor players, a
natural way for modeling the sequence of dynamic parameters θ1, . . . , θN is to view
it as being truncated from an infinite sequence {θi, i ≥ 1} which exhibits certain
statistical properties; this is made precise by assumption (A1) introduced below. For
a given N , define

Ik = {i|θi = k, 1 ≤ i ≤ N}, Nk = |Ik|,(1.5)

where |Ik| is the cardinality of the index set Ik, 1 ≤ k ≤ K. Let π
(N)
k = Nk/N . Then

π(N) = (π
(N)
1 , . . . , π

(N)
K ) is a probability vector which gives the empirical distribution

of θ1, . . . , θN .
We introduce the following assumptions.
(A1) There exists a probability vector π such that limN→∞ π(N) = π, where

π = (π1, . . . , πK) and min1≤k≤K πk > 0.
(A2) The initial states xj(0), 0 ≤ j ≤ N , are independent; Exi(0) = 0 for each

i ≥ 1; and there exists c0 < ∞ independent of N such that supj≥0 E|xj(0)|2 ≤ c0.
It is implied by (A1) that when N → ∞, the proportion of k-type minor players

becomes stable for each k and that the number of each type of minor players tends to
infinity. Throughout the paper we make the convention that N is suitably large such
that min1≤k≤K Nk ≥ 1.
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For simplicity, in (A2) it is assumed that all minor players have zero initial mean.
It is possible to generalize our analysis to deal with different initial means as long as
{Exi(0), i ≥ 1} has a limiting empirical distribution; see related discussions in [20].

It is worthwhile to note that LQ and LQG games have been a fruitful research
area for the analysis and computation of equilibrium strategies (see, e.g., [2, 3, 4,
7, 9, 12, 29, 33, 38]). The class of LQG games with mixed players and mean field
coupling will reveal novel features concerning the interaction of the agents, which do
not emerge in traditional LQG games with a small number of players.

1.2. Objective and information pattern. Within the noncooperative game
setup, the primary objective of this paper is to develop decentralized control synthesis
under large population conditions such that each player’s strategy uses only limited
information. In particular, we assume that the state x0 of the major player is available
to all players, while the state of each minor player is always known to itself.

1.3. Novelty, contributions, and organization. Due to the presence of a
large number of individually insignificant minor players, one might conjecture an
asymptotic Nash equilibrium solution of the following form: the major player A0’s
strategy is a function of only (t, x0(t)), and each minor player Ai’s strategy is a func-
tion of only (t, xi(t), x0(t)). However, as is less anticipated, this objective is in general
not achievable. Concerning the inadequacy of the state information in the above con-
jectured solution, the reason may be roughly explained as follows. In this model, due
to responding to the same major player, the behavior of the minor players will have
inherent correlation. Subsequently, their aggregate effect as a random process is di-
rectly impacted by the major player, and from the point of view of the major player,
when determining its equilibrium strategy, it cannot “freeze” the aggregate effect by
treating it as an exogenous signal. So, for the decision making of an individual player
(especially the major player), it is crucial to identify how the aggregate effect statis-
tically evolves. For this reason, we need to introduce additional system states based
on available information for the control synthesis of the players. The above treatment
is in remarkable contrast to the analysis in [20], where the solution begins by first
isolating the aggregate effect of all comparably small agents as an exogenous signal
and next identifying an individual-mass interaction consistency relationship. In the
end, each agent’s strategy depends on only its own state [20]. Thus the inclusion of a
major player can dramatically alter the nature of the game.

To tackle the model with mixed players, our fundamental approach is to determine
the aggregate effect, represented by a set of aggregate quantities, of the minor players
such that within the population limit the major player optimally responds to that
aggregate effect while each minor player optimally responds to the major player and
that aggregate effect combined, and such that all the minor players also collectively
produce the same aggregate effect initially presumed. Under reasonable conditions,
we show the existence of an aggregate effect possessing the above fixed point property
and prove that the resulting set of decentralized individual strategies has an asymp-
totic Nash equilibrium property; a solution with such a property is designated as the
Nash certainty equivalence (NCE) principle. The main contributions of the paper are
summarized as follows:

1. A state space augmentation approach is developed for the approximation of
the minor players’ aggregate effect.

2. The NCE methodology is applied to design decentralized strategies for the
N +1 players by use of a limiting two-player game. Conditions for solvability
of the NCE equation system are obtained.
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3. Weighted stability of the closed-loop system for the N + 1 players is proved,
and the set of NCE-based strategies is shown to be a decentralized ε-Nash
equilibrium for the LQG game.

To facilitate the presentation, throughout the paper we use C,C0, C1, etc. to
denote a generic constant, which may vary from place to place. The organization of
the paper is as follows. In section 2, as a motivating analysis we give some heuristics
on the mean field approximation. Section 3 examines a limiting two-player game.
Section 4 is devoted to the construction and analysis of the NCE equation system.
The weighted closed-loop stability and approximation results are developed in section
5. The asymptotic equilibrium analysis is presented in section 6. Section 7 develops
numerical solutions, and section 8 concludes the paper.

2. Heuristics for the mean field approximation. For obtaining decentral-
ized individual strategies, a crucial step is to analyze the average state of the minor
players: x(N) = (1/N)

∑N
i=1 xi. First we note that in a population solely consisting of

comparably small players, each having state yi and interacting with the average state
y(N) = (1/N)

∑N
i=1 yi (see [20, 21]), it has been shown that subject to self-optimizing

behavior, such an averaged quantity y(N) will collapse into a deterministic process
to be regarded as an exogenous signal by a given agent when the number of agents
increases to infinity. However, as is briefly explained in section 1.3, within the model
containing a major player A0, the aggregate effect of the minor players in general
appears as a random process and cannot be treated as an exogenous process. Here we
elaborate a little more on this aspect. When optimizing their own costs, the minor
players are subject to a significant influence from A0, and consequently, the resulting
controlled state processes xi, 1 ≤ i ≤ N , will each have significant correlation with the
state process x0 of A0. Accordingly, x

(N) is under the direct influence of the behavior
of A0, and the processes xi, 1 ≤ i ≤ N , will have significant correlation, which makes
it unlikely to achieve a good approximation of x(N) by a deterministic function.

Now, the natural question is, Before the control design of all players can be carried
out, how can we give a characterization of the process x(N)? It needs to be mentioned
that the actual situation is made even more complicated by the additional issue that
one needs to consider what are the associated individual controls even before starting
the analysis of x(N). Thus, the two issues of control design and the characterization
of x(N) are coupled, which makes the study of such models challenging.

To deal with the difficulties in approximating x(N), we begin by a heuristic ex-
amination of the structural properties of x(N) under self-optimizing behavior. Our
plan is the following: by starting with a full information-based game, we examine
the asymptotic property of the closed-loop system. For a fixed N , if each agent has
full state information of all agents, we may view the problem (1.1)–(1.4) as a stan-
dard LQG (Nash) game and use a set of coupled dynamic programming equations to
calculate the individual strategies (assuming their existence) in a feedback form; see
[3, 7, 33] for related analysis. We write the feedback Nash equilibrium strategy of Ai,
1 ≤ i ≤ N , in the general form

ui(t) = M
(θi)
1 xi(t) +M

(θi)
2 x0(t) +

N∑
j �=i,j=1

M
θi,θj
3 xj(t) +m(θi)(t),(2.1)

where the coefficient matrices and the function m(θi) depend on N . As indicated by
the superscripts in (2.1), we assume that two agents Ai and Ai′ of the same type (i.e.,

θi = θi′) share the same structure in their control laws, which means M
(θi)
1 = M

(θi′)
1 ,
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Mθi,θk
3 = M

θi′ ,θk
3 , and m(θi) = m(θi′), etc. In (2.1), the coefficients for the states

xi, x0, xj are restricted to constant matrices. The motivating reason is that for the
infinite horizon game problem, the individual control gain coefficients may be formally
solved from a set of coupled algebraic Riccati equations. Hence, we do not specify
these coefficients as being time-varying. However, the last term m(θi)(t) is given as
a function of time, and this is due to the terms η0 and η in the costs; in this case
the control off-set term m(θi)(t) is described by a linear ordinary differential equation
(ODE) when the optimization time horizon increases to infinity, and the interested
reader may study a similar phenomenon in a standard stochastic optimal tracking
problem; see Appendix A or [20]. Some additional justification of assuming time-
invariant coefficients for the state variables in (2.1) will be clear when we develop the
NCE-based equation system in section 4.

Substituting (2.1) into (1.2), we obtain

dxi =
[
Ã(θi)xi + Fx(N) + G̃(θi)x0 + m̃(θi)

]
dt+

N∑
j �=i,j=1

M̃
θi,θj
3 xjdt+DdWi,(2.2)

where Ã(θi) = A(θi) + BM
(θi)
1 , G̃(θi) = G+ BM

(θi)
2 , M̃

θi,θj
3 = BM

θi,θj
3 , and m̃(θi) =

Bm(θi).

It is obvious that the dynamics (2.2) for xi, 1 ≤ i ≤ N , differ according to the
specific value of θi ∈ Θ = {1, . . . ,K}. A useful step is to classify the states xi,
1 ≤ i ≤ N , into K groups. Let Ik and Nk be given by (1.5). Define

zk = (1/Nk)
∑
i∈Ik

xi, 1 ≤ k ≤ K,

which is the average state of the same type of agents. For each fixed k, we add up
both sides of (2.2) with respect to all i ∈ Ik to obtain

Nkdzk = Nk

[
Ã(k)zk + Fx(N) + G̃(k)x0 + m̃(k)

]
dt

+
∑
i∈Ik

N∑
j �=i,j=1

M̃
θi,θj
3 xjdt+

∑
i∈Ik

DdWi.(2.3)

Since M̃
θi,θj
3 depends on types of agents rather than individual agents, we have the

simple relation

ξk �
∑
i∈Ik

N∑
j �=i,j=1

M̃
θi,θj
3 xj

=
∑
i∈Ik

∑
j:j �=i,θj=k

M̃θi,k
3 xj +

∑
i∈Ik

∑
k′∈Θ\{k}

∑
j:θj=k′

M̃θi,k
′

3 xj

=
∑
i∈Ik

∑
j:j �=i,θj=k

M̃k,k
3 xj +

∑
i∈Ik

∑
k′∈Θ\{k}

∑
j:θj=k′

M̃k,k′
3 xj

= Nk(Nk − 1)M̃k,k
3 zk +Nk

∑
k′∈Θ\{k}

Nk′M̃k,k′
3 zk′ .(2.4)
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Now it follows from (2.3) and (2.4) that

dzk =
[
Ã(k)zk + Fx(N) + G̃(k)x0 + m̃(k)

]
dt

+ (Nk − 1)M̃k,k
3 zkdt+

∑
j∈Θ\{k}

NjM̃
k,j
3 zjdt+ (1/Nk)

∑
i∈Ik

DdWi.(2.5)

Furthermore we notice the relation

x(N) = (1/N)

K∑
j=1

Njzj =

K∑
j=1

π
(N)
j zj .(2.6)

Due to the coupling coefficient 1/N between two minor players, it is plausible to

assume that M̃k,k
3 and M̃k,k′

3 , k′ �= k, both have a magnitude of 1/N such that (Nk −
1)M̃k,k

3 and Nk′M̃k,k′
3 converge in the limit to two matrices, as N → ∞. In addition,

when N is large, the diffusion term (1/Nk)
∑

i∈Ik
DdWi(t) becomes negligible since

limN→∞(Nk/N) = πk > 0. Also, when N → ∞, we assume that Ã(k), G̃(k), and

m̃(k)(t), respectively, converge to their limits A
(k)

, Gk, mk(t) for k = 1, . . . ,K.
Now we introduce the equation system

(2.7) dzk =

K∑
j=1

Ak,jzjdt+Gkx0dt+mkdt, 1 ≤ k ≤ K,

as the limiting form of (2.5), where each matrix Ak,j is determined as the limit of
the coefficient associated with zj in (2.5) after the substitution of x(N) by (2.6).

Meanwhile, in the dynamics (1.1) of x0, the term x(N) is approximated by
∑K

k=1 πkzk.
It must be noted that in this section we use only heuristic arguments for iden-

tifying the limiting dynamics of the aggregate quantities z1, . . . , zK , and various hy-
potheses used in the derivation are not fully justified. Yet, the coefficient matrices
and the function mk in (2.7) are still undetermined. However, the procedure used
in this section is very informative. The introduction of the aggregate quantities and
the associated linear equation (2.7) will motivate the state space augmentation idea
subsequently to be used in the rigorous development of the NCE approach.

3. The limiting two-player model. In this section we formalize the auxiliary
two-player game within the population limit via the approximation of the average

state x(N). Since π
(N)
k ≈ πk for large N and

x(N) = (1/N)

K∑
k=1

∑
i∈Ik

xi =

K∑
k=1

π
(N)
k (1/Nk)

∑
i∈Ik

xi,

we may approximate x(N) by
∑K

k=1 πk z̄k, where z̄k ∈ Rn is used to approximate
(1/Nk)

∑
i∈Ik

xi. Denote z̄ = [z̄T1 , . . . , z̄
T
K ]T , which is to be called the set of aggregate

quantities. The process z̄ is described by the equation

dz̄(t) = Az̄(t)dt+Gx̄0(t)dt+m(t)dt,(3.1)

where z̄(0) = 0, A ∈ RnK×nK , and G ∈ RnK×n are constant matrices, and m(t) is a
continuous function on [0,∞). The zero initial condition for (3.1) is due to the zero
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initial mean for the minor players as specified in (A2). Some additional specification
for m(t) will be introduced later. We note that the introduction of (3.1) is essentially
motivated by (2.7). For x̄0 appearing in (3.1), we characterize it as being generated
by the limiting SDE below.

After replacing x(N) appearing in (1.1)–(1.2) by
∑K

k=1 πkz̄k, the dynamics of the
limiting two-player game are given by

dx̄0 =

[
A0x̄0 +B0u0 + F0

K∑
k=1

πkz̄k

]
dt+D0dW0, t ≥ 0,(3.2)

dx̄i =

[
A(κ)x̄i +Bui + F

K∑
k=1

πk z̄k +Gx̄0

]
dt+DdWi,(3.3)

where x̄0(0) = x0(0), x̄i(0) = xi(0), and we suppose the representative minor player
has its dynamic parameter θi = κ so that A(θi) = A(κ). To distinguish from the
original model with N + 1 players, we use the new state variables x̄0 and x̄i. But we
still use the same set of variables u0, ui, W0, and Wi in this population limit model,
and such a reuse of notation should cause no risk of confusion. Let Ā0 and Āi stand
for the two players described by (3.1)–(3.3), which will still be called the major player
and the minor player, respectively.

The cost functions for Ā0 and Āi, respectively, are given by

J̄0(u0(·)) = E

∫ ∞

0

e−ρt
{
(x̄0 − Φ)TQ0(x̄0 − Φ) + uT

0 R0u0

}
dt,(3.4)

J̄i(ui(·), u0(·)) = E

∫ ∞

0

e−ρt
{
(x̄i −Ψ)TQ(x̄i −Ψ) + uT

i Rui

}
dt,(3.5)

where Φ = H0

∑K
k=1 πkz̄k + η0 and Ψ = Hx̄0 + Ĥ

∑K
k=1 πkz̄k + η.

If the coefficients in (3.1) have been known, we may treat the model (3.1)–(3.3)
with the associated costs (3.4)–(3.5) as a standard Nash stochastic differential game
with two players Ā0 and Āi. We may notice a very appealing decoupling feature; i.e.,
(x̄i, ui) arises in neither the dynamics nor the cost of Ā0 so that J̄0 depends only on u0.
Thus, the equilibrium strategy û0 of Ā0 may be solved solely as an optimal control
problem described by (3.1), (3.2), and (3.4). After obtaining û0, the equilibrium
strategy ûi of Āi, again, is solved as an optimal control problem with the dynamics
given by (3.1), (3.3), and the closed-loop form of (3.2) under û0. However, one must
be reminded that in reality, the triple (A,G,m(t)) for approximation in the original
LQG game is not known in advance and instead needs to be properly determined.
This indeterminacy difficulty is to be tackled by the so-called NCE methodology.

4. The NCE-based control synthesis. Let k ≥ 1 be an integer. Define the
function class

Cρ/2([0,∞),Rk)

= {f |f ∈ C([0,∞),Rk), supt≥0|f(t)|e−(ρ′/2)t < ∞ for some ρ′ ∈ [0, ρ)}.(4.1)

Notice that ρ′ may vary with each f within the above set.
In the procedure described below, we assume (A,G,m) has been given and m ∈

Cρ/2([0,∞),RnK). By first assuming solvability, we proceed with the construction
of the equilibrium strategies of the two players while the rigorous analysis of the
associated equations will be developed later.
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4.1. Optimal control of the major player. Let “⊗” denote the Kronecker
product of two matrices [16]. Denote Fπ

0 = π ⊗ F0 and Hπ
0 = π ⊗H0. By (3.1) and

(3.2), the dynamics of Ā0 may be written in the form[
dx̄0

dz̄

]
=

[
A0 Fπ

0

G A

] [
x̄0

z̄

]
dt+

[
B0

0nK×n1

]
u0dt+

[
0n×1

m

]
dt+

[
D0dW0

0nK×1

]
,

where x̄0(0) = x0(0) and z̄(0) = 0. Define

A0 =

[
A0 Fπ

0

G A

]
, B0 =

[
B0

0nK×n1

]
, M0 =

[
0n×1

m

]
,

Qπ
0 = [I,−Hπ

0 ]
TQ0[I,−Hπ

0 ],

and η̄0 = [I,−Hπ
0 ]

TQ0η0. Notice that M0 ∈ Cρ/2([0,∞),Rn(K+1)).
We introduce the algebraic Riccati equation (ARE)

ρP0 = P0A0 + A
T
0 P0 − P0B0R

−1
0 B

T
0 P0 +Qπ

0 ,(4.2)

and the ODE

ρs0 =
ds0
dt

+ (AT
0 − P0B0R

−1
0 B

T
0 )s0 + P0M0 − η̄0,(4.3)

where s0 is to be sought within the set Cρ/2([0,∞),Rn(K+1)). If the corresponding
conditions in Lemma A.2 are satisfied, the optimal control law for Ā0 is given as

û0 = −R−1
0 B

T
0

[
P0(x̄

T
0 , z̄

T )T + s0
]
.

The closed-loop equation for Ā0 is given as

[
dx̄0

dz̄

]
=

(
A0 − B0R

−1
0 B

T
0 P0

) [ x̄0

z̄

]
dt+

(
M0 − B0R

−1
0 B

T
0 s0

)
dt+

[
D0dW0

0nK×1

]
,

(4.4)

where x̄0(0) = x0(0) and z̄(0) = 0.

4.2. Optimal control of the minor player. Denote Fπ = π ⊗ F and Ĥπ =
π⊗Ĥ . Assume θi = κ. For determining the strategy of Āi, we combine the closed-loop
equation (4.4) of Ā0 with (3.3) to obtain the SDE

d

⎡⎣ x̄i

x̄0

z̄

⎤⎦ =

[
A(κ) [G Fπ]
0 A0 − B0R

−1
0 BT

0 P0

]⎡⎣ x̄i

x̄0

z̄

⎤⎦ dt+

[
B

0n(K+1)×n1

]
uidt

+

[
0n×1

M0 − B0R
−1
0 BT

0 s0

]
dt+

⎡⎣ DdWi

D0dW0

0nK×1

⎤⎦ ,(4.5)

where x̄i(0) = xi(0), x̄0(0) = x0(0), z̄(0) = 0 and P0 is determined from (4.2). For the
optimal control problem associated with (4.5) and (3.5), we introduce the notation

Aκ =

[
A(κ) [G Fπ]
0 A0 − B0R

−1
0 BT

0 P0

]
, B =

[
B

0n(K+1)×n1

]
,

M =

[
0n×1

M0 − B0R
−1
0 BT

0 s0

]
,(4.6)

Qπ = [I,−H,−Ĥπ]TQ[I,−H,−Ĥπ], η̄ = [I,−H,−Ĥπ]TQη.
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We introduce the ARE

ρPκ = PκAκ + A
T
κPκ − PκBR

−1
B
TPκ +Qπ(4.7)

and the ODE

ρsκ =
dsκ
dt

+
(
A

T
κ − PκBR

−1
B
T
)
sκ + PκM− η̄,(4.8)

where sκ is to be sought within the set Cρ/2([0,∞),Rn(K+2)). Parallel to the control
law of Ā0 in section 4.1, if the conditions in Lemma A.2 are satisfied, the optimal
control law for Āi is given by

ûi = −R−1
B
T
[
Pκ(x̄

T
i , x̄

T
0 , z̄

T )T + sκ
]
.(4.9)

Finally, substituting (4.9) into (3.3) gives

dx̄i = A(κ)x̄idt+Gx̄0dt+ Fπ z̄dt−BR−1
B
TPκ(x̄

T
i , x̄

T
0 , z̄

T )T dt

−BR−1
B
T sκdt+DdWi,(4.10)

where x̄i(0) = xi(0).

4.3. The consistency condition. For the matrices Pκ, κ = 1, . . . ,K, and P0,
we introduce the partition

Pκ =

⎡⎣ Pκ,11 Pκ,12 Pκ,13

Pκ,21 Pκ,22 Pκ,23

Pκ,31 Pκ,32 Pκ,33

⎤⎦ , P0 =

[
P0,11 P0,12

P0,21 P0,22

]
,(4.11)

where Pκ,11, Pκ,22 ∈ Rn×n, Pκ,33 ∈ RnK×nK , and P0,11 ∈ Rn×n, P0,22 ∈ RnK×nK .
The matrices A, G and function m(t) are represented in the form

A =

⎡⎢⎣ A1

...
AK

⎤⎥⎦ , G =

⎡⎢⎣ G1

...
GK

⎤⎥⎦ , m(t) =

⎡⎢⎣ m1(t)
...

mK(t)

⎤⎥⎦ ,(4.12)

where Ak ∈ Rn×nK , Gk ∈ Rn×n, and mk(t) ∈ Rn for 1 ≤ k ≤ K. Denote the n× nK
matrix

ek = [0n×n, . . . , 0n×n, In, 0n×n, . . . , 0n×n],(4.13)

where the n×n identity matrix In is at the kth block, 1 ≤ k ≤ K. Now we consider the
average state (1/Nκ)

∑
i∈Iκ

xi of Nκ κ-type minor players with closed-loop dynamics
of the form (4.10). When N → ∞ so that Nκ → ∞, we obtain an equation for the
aggregate quantity z̄κ (for the approximation of (1/Nκ)

∑
i∈Iκ

xi) as

dz̄κ =
{[
A(κ) −BR−1BTPκ,11

]
eκ + Fπ −BR−1BTPκ,13

}
z̄dt

+ (G−BR−1BTPκ,12)x̄0dt−BR−1
B
T sκdt,(4.14)

where z̄ = [z̄T1 , . . . , z̄
T
K ]T and z̄(0) = 0. Compared with (4.10), the diffusion term has

been averaged out in (4.14), leading to a stochastic ODE involving the driving random
process x̄0. Now, under the NCE methodology, the resulting equation system (4.14)
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for the aggregate quantities should coincide with (3.1), which had been presumed in
the first place, and we call this requirement the consistency condition.

By the consistency condition we compare the coefficients involved in both (3.1)
and (4.14) to obtain the equality relations

Aκ = [A(κ) −BR−1BTPκ,11]eκ + Fπ −BR−1BTPκ,13,(4.15)

Gκ = G−BR−1BTPκ,12,(4.16)

mκ = −BR−1
B
T sκ(4.17)

for κ = 1, . . . ,K.

4.4. The NCE equation system. Combining (4.2), (4.7), (4.15), and (4.16),
we introduce the algebraic equation system⎧⎪⎪⎨⎪⎪⎩

ρP0 = P0A0 + AT
0 P0 − P0B0R

−1
0 BT

0 P0 +Qπ
0 ,

ρPκ = PκAκ + AT
κPκ − PκBR

−1BTPκ +Qπ, κ = 1, . . . ,K,
Aκ = [A(κ) −BR−1BTPκ,11]eκ + Fπ −BR−1BTPκ,13 ∀κ,
Gκ = G−BR−1BTPκ,12 ∀κ,

(4.18)

which will be called the consistency-constrained AREs.
Combining (4.3), (4.8), and (4.17), we introduce the ODE system⎧⎪⎨⎪⎩

ρs0 = ds0
dt + (AT

0 − P0B0R
−1
0 BT

0 )s0 + P0M0 − η̄0,

ρsκ = dsκ
dt + (AT

κ − PκBR
−1

B
T )sκ + PκM− η̄, κ = 1, . . . ,K,

mκ = −BR−1BT sκ ∀κ,
(4.19)

which will be called the consistency-constrained ODEs. Recall that m has been used
in defining M0 and M. The equation systems (4.18)–(4.19) combined will be called
the NCE equation system.

Let Pκ, 1 ≤ κ ≤ K, be partitioned as in (4.11). Denote

M1 =

⎡⎢⎣ A(1)−BR−1BTP1,11

. . .

A(K)−BR−1BTPK,11

⎤⎥⎦ ,

M2 =

⎡⎢⎣ BR−1BTP1,13

...
BR−1BTPK,13

⎤⎥⎦ ,

(4.20)

where M1 and M2 are each an nK×nK matrix. Note that the third equality in (4.18)
may be written in an equivalent compact form,

A = M1 + 1K ⊗ Fπ −M2,(4.21)

where 1K ∈ RK is the column vector with all K entries equal to 1. Also, the last
equation in (4.18) gives

G =

⎡⎢⎣ G−BR−1BTP1,12

...
G−BR−1BTPK,12

⎤⎥⎦ .(4.22)
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Definition 1. The set of constant matrices (P0, A,G, Pκ, κ = 1, . . . ,K) is said
to be a consistent solution to (4.18) if

P0 ≥ 0, Pκ ≥ 0 ∀κ,
Aκ − BR−1

B
TPκ − (ρ/2)I is Hurwitz ∀κ,(4.23)

and (4.18) is satisfied (a square real-valued matrix is Hurwitz if all its eigenvalues
have negative real parts). If, furthermore,

Aκ − BR−1
B
TPκ is Hurwitz ∀κ,(4.24)

we say (P0, A,G, Pκ, κ = 1, . . . ,K) is a stabilizing consistent solution to (4.18).
Proposition 2. The condition (4.23) (resp., (4.24)) implies that A0−B0R

−1
0 BT

0 P0−
(ρ/2)I and A(κ) − BR−1BTPκ,11 − (ρ/2)I (resp., A0 − B0R

−1
0 BT

0 P0 and A(κ) −
BR−1BTPκ,11) are Hurwitz, κ = 1, . . . ,K.

Proof. For any fixed κ, let Pκ be partitioned into the form

Pκ =

[
Pκ,11 Qκ,12

Qκ,21 Qκ,22

]
,

where Pκ,11 ∈ Rn×n and Qκ,22 ∈ Rn(K+1)×n(K+1). By use of (4.6), it is straightfor-
ward to show that

Aκ − BR−1
B
TPκ =

[
A(κ)−BR−1BPκ,11 ∗

0 A0 − B0R
−1
0 B

T
0 P0

]
,

where the upper right block of the right-hand side is not displayed. The proposition
follows.

Definition 3. Suppose (P0, A,G, Pκ, κ = 1, . . . ,K) is a consistent solution to
(4.18) and the matrices (P0, Pκ, κ = 1, . . . ,K) are further used to define the equation
system (4.19). The set of 2K + 1 vector functions (s0, sκ,mκ, κ = 1, . . . ,K) is called
a consistent solution to (4.19) if the following two conditions hold:

(i) s0 ∈ Cρ/2([0,∞),Rn(K+1)), and both sκ andmκ belong to Cρ/2([0,∞),Rn(K+2))
for each κ;

(ii) (4.19) is satisfied.
Definition 4. If (P0, A,G, Pκ, κ = 1, . . . ,K) and (s0, sκ,mκ, κ = 1, . . . ,K) are,

respectively, a consistent solution to (4.18) and (4.19), we call (P0, A,G, Pκ, s0, sκ,mκ,
κ = 1, . . . ,K) a solution to the NCE equation system (4.18)–(4.19).

Suppose (P0, Pκ, κ = 1, . . . ,K) has been obtained from a consistent solution to
(4.18). Denote the nK × nK(K + 2) matrix

Λ = IK ⊗ (BR−1
B
T ),

which is blockwise diagonal with K identical diagonal blocks of BR−1BT . Denote
P0 = [P0,1, P0,2], where P0,1 ∈ Rn(K+1)×n and P0,2 ∈ Rn(K+1)×nK . Denote Pκ =
[Pκ,1, Pκ,2], where Pκ,1 ∈ Rn(K+2)×n and Pκ,2 ∈ Rn(K+2)×n(K+1). Furthermore, let
Pκ,2a be the last nK columns of Pκ, which implies that Pκ,2a is also a submatrix of
Pκ,2. Denote

Â0 = A0 − B0R
−1
0 B

T
0 P0 − ρI, Âκ = Aκ − BR−1

B
TPκ − ρI,

Γ1 = −

⎡⎢⎢⎢⎣
Â

T
0

ÂT
1

. . .

ÂT
K

⎤⎥⎥⎥⎦ , Γ2 =

⎡⎢⎢⎢⎣
0n(K+1)×n(K+1) P0,2Λ
P1,2B0R

−1
0 BT

0 P1,2aΛ
...

...
PK,2B0R

−1
0 BT

0 PK,2aΛ

⎤⎥⎥⎥⎦ ,
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and Γ = Γ1 + Γ2.
Define

s∗ = [sT0 , s
T
1 , . . . , s

T
K ]T , η∗ = [η̄T0 ,1

T
K ⊗ η̄T ]T .

After expressing M0 and M in terms of s∗, the equation system (4.19) leads to the
ODE

ds∗
dt

= Γs∗ + η∗, t ≥ 0,(4.25)

where the initial condition s∗(0) is undetermined.
Proposition 5. Suppose (P0, A,G, Pκ, κ = 1, . . . ,K) is a consistent solution to

(4.18), and denote ds = n(K + 1) + nK(K + 2). Then we have the following:
(i) Equation (4.25) always has at least one solution in the class Cρ/2([0,∞),Rds).
(ii) If, furthermore, the real part of each eigenvalue of Γ is at least ρ/2, then

there is a unique initial condition s∗(0) such that the solution s∗ is in the class
Cρ/2([0,∞),Rds), and in this case s∗ is in fact bounded.

Proof. We may assume that Γ is blockwise diagonal,

Γ =

[
Γ11

Γ22

]
,(4.26)

where the real part of all eigenvalues of Γ11 (resp., Γ22) is less than (resp., at least) ρ/2.
The general case may be treated by first applying a nonsingular linear transformation
to (4.25) so that Γ is converted into the form (4.26).

(i) We split s∗ into two parts s−∗ , s
+
∗ and split η∗ into two parts η−∗ , η

+
∗ , so that

(4.25) gives

ds−∗
dt

= Γ11s
−
∗ + η−∗ ,(4.27)

ds+∗
dt

= Γ22s
+
∗ + η+∗ .

We may express

s+∗ (t) = eΓ22t

[
s+∗ (0) +

∫ t

0

e−Γ22τη+∗ dτ
]
, t ≥ 0.

If the initial condition for s+∗ is given as

s+∗ (0) = −
∫ ∞

0

e−Γ22τη+∗ dτ,(4.28)

it may be checked that the resulting function s+∗ (t) is bounded on [0,∞). For any
other initial condition different from (4.28), the solution s+∗ (t) has a growth rate of
at least e(ρ/2)t. Subsequently, we may take any s−∗ (0) for (4.27) so that s−∗ (t) is in

Cρ/2([0,∞),Rd−
), where d− is the dimension of s−∗ , and s∗ = [(s−∗ )T , (s+∗ )T ]T gives a

solution in Cρ/2([0,∞),Rds) as desired.

(ii) For this case there exists a unique s∗(0) = − ∫∞
0 e−Γτη∗dτ to give a bounded

solution s(t), and any other initial condition generates a solution with a growth rate
of at least e(ρ/2)t.
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Remark. Notice that when P0, Pκ, κ = 1, . . . ,K, are obtained from a consistent
solution of (4.18), all eigenvalues of Γ1 have a real part greater than ρ/2 by Proposition
2. Thus, to fulfill the assumption in part (ii) of Proposition 5 the perturbing term
Γ2 in Γ = Γ1 + Γ2 should act in a favorable manner so that the real part of each
eigenvalue of Γ is at least ρ/2.

Proposition 5 has interesting implications. It suggests that the solvability of
the NCE equation system (4.18)–(4.19) is essentially reduced to the solvability of
(4.18). In particular, once a consistent solution to (4.18) is obtained, a consistent
solution to (4.19) is guaranteed; in addition, if the real part of each eigenvalue of Γ in
(4.25) is at least ρ/2, then (4.25) is uniquely solvable within Cρ/2([0,∞),Rds), which
yields a corresponding solution to (4.19). From this point of view, (4.18) is of central
importance in the NCE-based control synthesis.

5. Closed-loop behavior of the agents. Suppose (P0, A,G, Pκ, s0, sκ,mκ, κ =
1, . . . ,K) is a solution to the NCE equation system (4.18)–(4.19). We introduce the
following assumption.

(A3) The matrix M1 − (ρ/2)I + 1K ⊗Fπ is Hurwitz, where Fπ = π⊗F and M1

is given by (4.20).
Remark. Intuitively, if the perturbing term 1K ⊗ Fπ is relatively small, one

may expect M1 − (ρ/2)I + 1K ⊗ Fπ to be Hurwitz since M1 − (ρ/2)I is Hurwitz by
Proposition 2. But it should be noted that M1 implicitly depends on Fπ.

Now we examine the closed-loop behavior of the N + 1 agents when the NCE-
based strategies are applied. Consider the stochastic system described by (1.1)–(1.2)
together with

dz = Azdt+Gx0dt+mdt,(5.1)

where z = [zT1 , . . . , z
T
K ]T and z(0) = 0. Let the control laws of A0 and Ai, 1 ≤ i ≤ N ,

be given by

û0 = −R−1
0 B

T
0 [P0(x

T
0 , z

T )T + s0],(5.2)

ûi = −R−1
B
T
[
Pθi(x

T
i , x

T
0 , z

T )T + sθi
]
, 1 ≤ i ≤ N,(5.3)

where θi is the dynamic parameter of Ai. Concerning decentralized implementation
of (5.2)–(5.3), the key observation here is that the evolution of z is driven by the
major player’s state which is available to all players.

After the control laws (5.2)–(5.3) are applied, the closed-loop dynamics of A0 and
Ai, 1 ≤ i ≤ N , may be written in the form

dx0 =
{
A0x0 −B0R

−1
0 B

T
0 [P0(x

T
0 , z

T )T + s0] + F0x
(N)

}
dt+D0dW0,(5.4)

dxi =
{
A(θi)xi −BR−1

B
T [Pθi(x

T
i , x

T
0 , z

T )T + sθi ] + Fx(N) +Gx0

}
dt(5.5)

+DdWi, 1 ≤ i ≤ N,

where z is given by (5.1). In contrast to the limiting equation system (3.1)–(3.3) in
section 3 for the two players Ā0 and Āi, the evolution of z in (5.1) is now driven by
the actual state x0 of the major player A0 instead of its large population limit version
x̄0.

Let Iκ and Nκ be defined by (1.5). Denote žκ = (1/Nκ)
∑

i∈Iκ
xi as the average

state of κ-type minor players, and ž = [žT1 , . . . , ž
T
K ]T . By use of (5.5), the dynamics
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for žκ are given as follows:

džκ =
{
A(κ)žκ −BR−1

B
T [Pκ(ž

T
κ , x

T
0 , z

T )T + sκ] + Fx(N) +Gx0

}
dt(5.6)

+ (1/Nκ)D
∑
i∈Iκ

dWi,

where žκ(0) = (1/Nκ)
∑

i∈Iκ
xi(0).

We recall that by Proposition 2, M1 − (ρ/2)I and A0 −B0R
−1
0 BT

0 P0 − (ρ/2)I are
Hurwitz if (P0, A,G, Pκ, κ = 1, . . . ,K) is a consistent solution to (4.18). Under (A3),
let the fixed number ρ̂ ∈ [0, ρ) be chosen such that

M1 − (ρ̂/2)I + 1K ⊗ Fπ, M1 − (ρ̂/2)I, A0 − B0R
−1
0 B

T
0 P0 − (ρ̂/2)I(5.7)

are Hurwitz,

sup
t≥0,1≤κ≤K

e−(ρ̂/2)t(|s0|+ |sκ|+ |mκ|) < ∞.(5.8)

Now we are in a position to state the weighted stability and approximation results.
Theorem 6. Assume (A1)–(A3). Suppose (P0, A,G, Pκ, s0, sκ,mκ, κ = 1, . . . ,K)

is a solution to the NCE equation system (4.18)–(4.19). For the system of N+1 agents,
there exists N (0) > 0 such that the closed-loop system (5.1), (5.4)–(5.5) satisfies

sup
t≥0,0≤j≤N

e−ρ̂t
{
E|xj(t)|2 + E|z(t)|2 + E|ž(t)|2} ≤ C0

for some constant C0 independent of N ≥ N (0). In addition, the approximation

sup
t≥0

e−ρ̂tE|ž(t)− z(t)|2 ≤ C1(1/N + ε2N )(5.9)

holds, where C1 is independent of N ≥ N (0) and εN = sup1≤k≤K |π(N)
k − πk|.

Proof. See Appendix B.
Remark. Theorem 6 holds if ρ̂ is replaced by ρ, but this gives a less tight estimate

of the solution growth.
By inspecting the proof of Theorem 6, we obtain the following corollary.
Corollary 7. Assume (A1) and (A2) hold, M1+1K⊗Fπ is Hurwitz, (P0, A,G, Pκ,

κ = 1, . . . ,K) is a stabilizing consistent solution to (4.18), and (s0, sκ,mκ, κ =
1, . . . ,K) is a bounded consistent solution to (4.19). Then the conclusions of The-
orem 6 hold with ρ̂ = 0.

Corresponding to (5.1), (5.4)–(5.5), we now construct the limiting equation system

dx̄0 =
{
A0x̄0 −B0R

−1
0 B

T
0 [P0(x̄

T
0 , z̄

T )T + s0] + Fπ
0 z̄

}
dt+D0dW0,

(5.10)

dx̄i =
{
A(θi)x̄i −BR−1

B
T [Pθi(x̄

T
i , x̄

T
0 , z̄

T )T + sθi ] + Fπ z̄ +Gx̄0

}
dt+DdWi,

(5.11)

where 1 ≤ i ≤ N , x̄j(0) = xj(0) for j = 0, . . . , N , and

dz̄ = Az̄dt+Gx̄0dt+mdt,(5.12)

with the initial condition z̄(0) = 0.
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The following comparison result shows the approximation error between the mean
field model (5.1), (5.4)–(5.5) and the limiting model (5.10)–(5.12). The result is useful
for cost estimation when proving Theorem 10 in section 6.

Proposition 8. Assume (A1)–(A3). Let (P0, A,G, Pκ, s0, sκ,mκ, κ = 1, . . . ,K)
be a solution to the NCE equation system (4.18)–(4.19). Let (x0, x1, . . . , xN , z) be
the solution to the closed-loop system (5.1), (5.4)–(5.5), and let (x̄0, x̄1, . . . , x̄N , z̄) be
given by (5.10)–(5.12). Then we have

sup
t≥0,0≤j≤N

e−ρ̂t
{
E|z(t)− z̄(t)|2 + E|xj(t)− x̄j(t)|2

} ≤ C(1/N + ε2N ),

where C > 0 is a constant independent of N ≥ N (0), and ρ̂, εN , N (0) are the same
as in Theorem 6.

Proof. Denote x̃j = xj − x̄j , j = 0, . . . , N , and z̃ = z − z̄. Then we have

dx̃0 =

{
A0x̃0 −B0R

−1
0 B

T
0 P0(x̃

T
0 , z̃

T )T + F0

K∑
k=1

π
(N)
k žk − Fπ

0 z̄

}
dt,

dz̃ = Az̃dt+Gx̃0dt,

dx̃i =

{
A(θi)x̃i −BR−1

B
TPθi(x̃

T
i , x̃

T
0 , z̃

T )T + F

K∑
k=1

π
(N)
k žk − Fπ z̄ +Gx̃0

}
dt,

where z̃(0) = 0 and x̃j(0) = 0, j = 0, . . . , N . Analogously to (B.1)–(B.2) in Appendix
B, we define x̃j,ρ̂ = e−(ρ̂/2)tx̃j , j = 0, . . . , N and z̃ρ̂ = e−(ρ̂/2)tz̃. We further have

dx̃0,ρ̂ =
{
[A0 − (ρ̂/2)I]x̃0,ρ̂ −B0R

−1
0 B

T
0 P0(x̃

T
0,ρ̂, z̃

T
ρ̂ )

T + Fπ
0 z̃ρ̂(5.13)

+ F0

K∑
k=1

πk(žk,ρ̂ − zk,ρ̂) + F0

K∑
k=1

(π
(N)
k − πk)žk,ρ̂

}
dt,

dz̃ρ̂ =
[
A− (ρ̂/2)I

]
z̃ρ̂dt+Gx̃0,ρ̂dt,(5.14)

dx̃i,ρ̂ =

{
[A(θi)− (ρ̂/2)I]x̃i,ρ̂ −BR−1

B
TPθi(x̃

T
i,ρ̂, x̃

T
0,ρ̂, z̃

T
ρ̂ )

T +Gx̃0,ρ̂ + Fπ z̃ρ̂(5.15)

+ F

K∑
k=1

πk(žk,ρ̂ − zk,ρ̂) + F

K∑
k=1

(π
(N)
k − πk)žk,ρ̂

}
dt, 1 ≤ i ≤ N.

By (5.13)–(5.14), the stability of A0 − B0R
−1
0 B

T
0 P0 − (ρ̂/2)I, and Theorem 6, for

N ≥ N (0) we obtain

sup
t≥0

{
E|x̃0,ρ̂(t)|2 + E|z̃ρ̂(t)|2

} ≤ C(1/N + ε2N ),

which, combined with (5.15), leads to (notice that A(θi)−BR−1BTPθi,11 − (ρ̂/2)I is
Hurwitz by (5.7))

sup
t≥0,1≤i≤N

E|x̃i,ρ̂(t)|2 ≤ C(1/N + ε2N ),

where C is independent of N ≥ N (0). This completes the proof.
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6. Asymptotic equilibrium analysis. Define

M3 =

⎡⎣ A0 0 Fπ
0

G A 0
G −M2 M1 + 1K ⊗ Fπ

⎤⎦ , L0,H = Q
1/2
0 [I, 0,−Hπ

0 ],(6.1)

where M1 and M2 are as given by (4.20). Similarly, we define M
(N)
3 (resp., L

(N)
0,H)

when π is replaced by π(N) in the definition of M3 (resp., L0,H).
We introduce the following stability, observability, and detectability conditions:
(A3′) The matrix M1 + 1K ⊗ Fπ is Hurwitz.
(A4) The pair (L0,H ,M3) is observable.
(A5) The pair (La,A0− (ρ/2)I) is detectable, and for each κ = 1, . . . ,K, the pair

(Lb,Aκ−(ρ/2)I) is detectable, where La = Q
1/2
0 [I,−Hπ

0 ] and Lb = Q1/2[I,−H,−Ĥπ].
Obviously, (A3′) is stronger than (A3), and it will be used in establishing the

asymptotic equilibrium results for the model with mean field coupling in both the
dynamics and costs. The above observability condition will be useful for obtaining
prior integral estimates of the state process of the major player. From the point of
view of the major player, the system dynamics may be specified in terms of the state
vector (x0, z, ž), and M3 essentially appears as the coefficient matrix of (x0, z, ž) in
the limiting dynamics when N → ∞.

Consider the system of N + 1 agents described by (1.1)–(1.2) and (5.1). For
any 0 ≤ j ≤ N , the admissible control set Uj of agent Aj consists of all Lipschitz
feedback controls uj with respect to (x0, x1, . . . , xN , z) (i.e., uj is a continuous function
of (t, x0, x1, . . . , xN , z) and is Lipschitz continuous with respect to (x0, x1, . . . , xN , z))
such that a unique strong solution to the closed-loop system of the N+1 agents exists
on [0,∞). Note that Uj itself is not required to be decentralized. For j = 0, . . . , N ,
denote u−j = (u0, . . . , uj−1, uj+1, . . . , uN), and let Jj(uj , u−j) be defined by (1.3)–
(1.4).

Definition 9. A set of controls uk ∈ Uk, 0 ≤ k ≤ N , for the N + 1 players is
called an ε-Nash equilibrium with respect to the costs Jk, 0 ≤ k ≤ N , where ε ≥ 0, if
for any i, 0 ≤ i ≤ N , we have

Ji(ui, u−i) ≤ Ji(u
′
i, u−i) + ε,

when any alternative u′
i ∈ Ui is applied by player Ai.

Below we state the main result on the asymptotic Nash equilibrium property of
the decentralized strategies specified by (5.2)–(5.3).

Theorem 10. Assume that (A1), (A2), (A3′), (A4), and (A5) hold and that

(P0, A,G, Pκ, s0, sκ,mκ, κ = 1, . . . ,K)

is a stabilizing solution to the NCE equation system (4.18)–(4.19). In addition, Q is
nonsingular. Then the set of NCE-based strategies (5.2)–(5.3) is an ε-Nash equilib-
rium, where ε = O(1/

√
N + εN ) → 0 as N → ∞ and εN is given as in Theorem

6.
Proof. See Appendix C.

6.1. The model with mean field coupling only in costs. For the model
with only cost coupling, the dynamics (1.1)–(1.2) reduce to the simpler form

dx0 = [A0x0 +B0u0] dt+D0dW0, t ≥ 0,(6.2)

dxi = [A(θi)xi +Bui +Gx0] dt+DdWi, 1 ≤ i ≤ N,(6.3)
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and the costs are still given by (1.3)–(1.4). We state the main result, where the
solution to the NCE equation system is not required to be stabilizing. Note that
when F = 0 as in (6.3), a solution to the NCE equation system (4.18)–(4.19) always
satisfies (A3).

Theorem 11. Suppose that (A1), (A2), (A4), and (A5) hold and that

(P0, A,G, Pκ, s0, sκ,mκ, κ = 1, . . . ,K)

is a solution to the NCE equation system (4.18)–(4.19), and (Q1/2, A(κ)− (ρ/2)I) is
detectable for κ = 1, . . . ,K. Then the set of NCE-based strategies (5.2)–(5.3) is an
ε-Nash equilibrium, where ε = O(1/

√
N + εN ) → 0 as N → ∞ and εN is given as in

Theorem 6.
Proof. Step 1 in the proof of Theorem 10 is still valid for this theorem. In partic-

ular, (C.12) still holds. Next, for a given minor player Ai0 , we restrict our attention
to control ui0 satisfying (C.18) in which x0 and x(N) − xi0/N may be separated from
xi0 and estimated; this gives

E

∫ ∞

0

e−ρt
{
xT
i0(I − ĤT /N)Q(I − Ĥ/N)xi0 + uT

i0Rui0

}
dt ≤ C(6.4)

for some C independent of N ≥ N (0), where N (0) is the same as for (C.18). By
(6.4), we use detectability of (Q1/2, A(θi0 ) − (ρ/2)I) and follow the argument in
proving (A.12) to obtain E

∫∞
0 e−ρt|xi0 (t)|2dt ≤ C1 for C1 independent of N ≥

N (0). Subsequently, (C.28) and (C.29) may be established for ui0 satisfying (C.18).
Finally, similarly to Step 2 in the proof of Theorem 10, we may show that when
Ai0 applies a strategy u′

i0
∈ Ui0 other than ûi0 , it can reduce its cost by at most

O(1/
√
N + εN ).

7. Numerical solutions. In the numerical examples, we follow the notation
used in section 1.1.

7.1. A model with homogeneous minor players. The dynamics of the ma-
jor and minor players are given by

dx0 = 2x0dt+ u0dt+ 0.2x(N)dt+ dW0,

dxi = 3xidt+ x0dt+ uidt+ 0.3x(N)dt+ dWi,

where 1 ≤ i ≤ N , and the parameters in the costs (1.3)–(1.4) are given by

[Q0, R0, H0, η0] = [1, 1, 0.3, 1.5], [Q,R,H, Ĥ, η] = [1, 3, 0.4, 0.3, 1].(7.1)

The discount factor ρ = 1. The following heuristic algorithm is used for finding the
numerical solution of (P0, A,G, P1), where P1 denotes the solution to the ARE (see
(4.18)) for the minor players.

Algorithm A.

Step 1. Take the initial guess A
(0)

= 0, G
(0)

= 0 (for A,G).

Step 2. Given (A
(k)

, G
(k)

), k ≥ 0, use this pair of parameters for (4.2) to obtain

P
(k+1)
0 .

Step 3. Use P
(k+1)
0 to determine coefficients in (4.7), which is then solved to give

P
(k+1)
1 .
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Fig. 1. Iteration of (A
(k)

, G
(k)

) by Algorithm A.

Step 4. Use (4.15)–(4.16) to give updated value (A
(k+1)

, G
(k+1)

). Go to Step 2
and continue until sufficient accuracy is obtained in solving (P0, A,G, P1).

Remark. In Step 2, (4.2) has a well-defined solution P
(k+1)
0 ≥ 0 provided that

the ARE (4.2) parametrized by (A
(k)

, G
(k)

) satisfies the standard stabilizability and
detectability conditions [37, p. 276]. For this example our initialization in Step 1
satisfies these conditions.

By 20 iterates of Algorithm A, we obtain

A = −2.06819117030469, G = −0.12205345839681,(7.2)

P0 =

[
3.29723523856799 0.08170803806570
0.08170803806570 0.02258535366897

]
,(7.3)

P1 =

⎡⎣ 15.19740215917039 3.36616037519042 0.90717135174368
3.36616037519042 0.84943268921156 0.25418426077389
0.90717135174368 0.25418426077389 0.08179273643943

⎤⎦ .(7.4)

The iteration of (A
(k)

, G
(k)

) is illustrated in Figure 1. The proof of convergence is
beyond the scope of this paper. It may be checked that with (P0, A,G, P1) given by
(7.2)–(7.4), (4.18) is satisfied with an error by the order of 10−13. For the calculation
below, we display only eight digits after the decimal point. We may further show that
A1 − BR−1BTP1 has three eigenvalues (−2.06580072, −1.31644101, −2.04898540)
implying a stabilizing consistent solution. We can show that M1 + 1K ⊗ Fπ in (A3′)
is now equal to −1.76580072< 0.

We form the three observability matrices

O =

⎡⎣ L0,H

L0,HM3

L0,HM2
3

⎤⎦ , O0 =

[
La

LaA0

]
, O1 =

⎡⎣ Lb

LbA1

LbA
2
1

⎤⎦ .
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Let i denote the imaginary unit. We calculate the eigenvalues:

For O : 0.64178536, −0.21616041± 0.92202101i.

For O0 : 0.91022868± 0.77648305i.

For O1 : −0.58367366, 1.20868326± 1.67225690i.

So each of (L0,H ,M3), (La,A0), and (Lb,A1) is an observable pair. This verifies the
detectability and observability conditions in (A4) and (A5).

Finally, we calculate the eigenvalues of Γ given in (4.25) as

2.27099915± 0.02306827i, 3.46108834, 3.04500020, 3.05095714,

which are all greater than ρ/2 = 0.5 so that condition (ii) in Proposition 5 holds. So
we may obtain a unique bounded solution s∗ for (4.25).

7.2. A model with two types of minor players. We consider a model with
a major player and two types of minor players. The dynamics of each player are
described by a one dimensional SDE, and for A0, the associated parameters are given
by

[A0, B0, F0, D0] = [2, 1, 0.1, 1], [Q0, R0, H0, η0] = [1, 1, 0.3, 1.5].

For the minor players of type 1, the parameters are given as

[A(1), B, F, G, D] = [3, 1, 0.3, 0.3, 1],(7.5)

[Q, R, H, Ĥ, η] = [1, 3, 0.2, 0.2, 0.8].(7.6)

For the minor players of type 2, the parameters are given by (7.5)–(7.6), with the
exception that A(2) = 1. The discount factor is ρ = 2, and the empirical distribution
in (A1) is π = (π1, π2) = (0.4, 0.6).

For reasons of space, instead of examining all matrices involved in assumptions
(A3), (A3′), (A4), and (A5), we focus on numerically solving the equation system
(4.18) since it is of particular importance. For the above system, by 20 iterates of
Algorithm A we obtain

A =

[ −1.08348395963536 −0.09869992104338
0.10050060055886 0.53858981314775

]
,

G =

[ −0.04879686018588
0.23921892627785

]
.

The solution to the major player’s algebraic Riccati equation is given as

P0 =

⎡⎣ 2.41194083638386 −0.00658100734677 −0.01476751788071
−0.00658100734677 0.00375991606902 0.00914044231566
−0.01476751788071 0.00914044231566 0.03099790296720

⎤⎦ .

For reasons of space, the solutions P1 and P2 associated with the minor players are
not displayed. We may check that (4.18) is satisfied with an error by the order of
10−14. Let

A
c
1 = A1 − BR−1

B
TP1, A

c
2 = A2 − BR−1

B
TP2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3338 MINYI HUANG

We can check that Ac
1 has eigenvalues

−1.08166600, 0.55015848, −0.43185289, −1.07514057,

and Ac
2 has eigenvalues

0.42264973, 0.55015848, −0.43185289, −1.07514057.

Clearly, neither Ac
1 nor A

c
2 is Hurwitz, but A

c
1−(ρ/2)I and Ac

2−(ρ/2)I are Hurwitz. So
we numerically obtain a consistent solution, but not a stabilizing consistent solution,
to (4.18).

8. Conclusion. This paper considers decentralized control for large population
LQG games involving a major player and a large number of minor players. Our ap-
proach is to use a mean field approximation such that the game problem in the popu-
lation limit is decomposed into a family of localized limiting two-player games, where
the aggregate effect of all minor players is characterized by a linear stochastic ODE
driven by the state of the major player. After introducing the so-called consistency
condition for the aggregate effect and the individual strategies, the Nash certainty
equivalence (NCE) approach is developed, which leads to decentralized strategies for
all players. Asymptotic Nash equilibrium properties for the obtained strategies are
established. For future work, we aim to extend the modeling and analysis to hier-
archical games where the major player is endowed with a certain leadership. The
associated decentralized strategy synthesis is of great interest.

Appendix A. Preliminaries on optimal tracking. Let (Ω,F ,Ft, t ≥ 0, P )
be an underlying filtration. Consider the n dimensional controlled SDE

dx(t) = Ax(t)dt +Bu(t)dt+ f(t)dt+DdW (t), t ≥ 0,(A.1)

where x(t) ∈ Rn, u(t) ∈ Rn1 is the control, f ∈ C([0,∞),Rn), and W (t) is an n2

dimensional standard Brownian motion adapted to Ft. The initial condition x(0) is
independent of W (t) and E|x(0)|2 < ∞. All the constant matrices have compatible
dimensions. A control u(·) is admissible if it is adapted to Ft and E

∫∞
0

e−ρt|u(t)|2dt <
∞. Denote all such admissible controls by the set U . We note that the notation or
variables used in this appendix are not required to be identical to those appearing in
section 1.1. For a given admissible control u(·), let the cost function be given by

J(u(·)) = E

∫ ∞

0

e−ρt
{
[Hx(t)− g(t)]T [Hx(t) − g(t)] + uT (t)Ru(t)

}
dt,(A.2)

where ρ > 0, H ∈ Rn×n, R > 0, and g ∈ C([0,∞),Rn).
Denote the algebraic Riccati equation (ARE)

ρΠ = ΠA+ATΠ−ΠBR−1BTΠ+HTH(A.3)

and the ordinary differential equation (ODE)

ρs(t) =
ds(t)

dt
+ (AT −ΠBR−1BT )s(t) + Πf(t)−HT g(t), t ≥ 0,(A.4)

where the solution s is to be sought within the class Cρ/2([0,∞),Rn) as defined by
(4.1). Notice that the initial condition s(0) is not prespecified at this stage.
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Similarly to [8, pp. 23–25], we use an algebraic approach to derive the optimal
control law. But some special care needs to be taken to deal with (A.4) which has no
boundary condition.

Lemma A.1. Suppose y(t) is given by the n dimensional stochastic differential
equation (SDE)

dy(t) = Āy(t)dt+ B̄u(t)dt+ f̄(t)dt + D̄dW (t),

where the constant coefficient matrices have compatible dimensions, Ā−(ρ/2)I is Hur-
witz, y(0) is independent of W (·) and satisfies E|y(0)|2 < ∞, f̄ ∈ Cρ/2([0,∞),Rn),

and u(·) ∈ U satisfies E
∫∞
0 e−ρt|u(t)|2dt ≤ c1 for some constant c1. Then there exists

a constant c2 such that E
∫∞
0

e−ρt|y(t)|2dt ≤ c2, where c2 may be determined only in
terms of (c1, ρ, Ā, B̄, f̄ , D̄, E|y(0)|2).

Proof. Denote yρ = e−(ρ/2)ty and uρ = e−(ρ/2)tu. We have

dyρ(t) =
[
Ā− (ρ/2)I

]
yρ(t)dt+ B̄uρ(t)dt+ e−(ρ/2)tf̄(t)dt+ e−(ρ/2)tD̄dW (t).

By expressing yρ(t) in terms of yρ(0) and integration with uρ, f̄ , and W , we obtain

E

∫ ∞

0

|yρ(t)|2dt ≤ C + E

∫ ∞

0

∣∣∣∣∫ t

0

e(Ā−(ρ/2)I)(t−τ)Buρ(τ)dτ

∣∣∣∣2 dt.(A.5)

Now we may find C (which may change in different places) and a fixed δ > 0 such
that

E

∫ ∞

0

|yρ(t)|2dt ≤ C + CE

∫ ∞

0

∣∣∣∣∫ t

0

e−δ(t−τ)|uρ(τ)|dτ
∣∣∣∣2 dt

≤ C + CE

∫ ∞

1

∣∣∣∣∫ t

0

e−δ(t−τ)|uρ(τ)|dτ
∣∣∣∣2 dt

= C + CE

∫ ∞

1

e−2δt

∣∣∣∣∫ t

0

|uρ(τ)|δeδτ/(eδt − 1)dτ

∣∣∣∣2 (eδt − 1)2δ−2dt

≤ C + CE

∫ ∞

1

e−2δt

∫ t

0

|uρ(τ)|2δeδτ/(eδt − 1)dτ(eδt − 1)2δ−2dt(A.6)

≤ C + CE

∫ ∞

0

e−δt

∫ t

0

eδτ |uρ(τ)|2dτdt

= C + CE

∫ ∞

0

|uρ(τ)|2dτ � c2,(A.7)

where (A.6) is obtained by Jensen’s inequality and (A.7) results from an exchange
of order of integration. It is clear that c2 may be determined only in terms of
(c1, ρ, Ā, B̄, f̄ , D̄, E|y(0)|2).

Lemma A.2. For the optimal control problem (A.1)–(A.2), assume (i) the pair
(H,A − (ρ/2)I) is detectable and (A.3) has a positive semidefinite solution Π such
that A − BR−1BTΠ − (ρ/2)I is Hurwitz, and (ii) both f and g are in the class
Cρ/2([0,∞),Rn). Then we have that

(a) there exists a unique solution s in the class Cρ/2([0,∞),Rn) for (A.4);
(b) the optimal control law is given by

û(t) = −R−1BT [Πx(t) + s(t)].(A.8)
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Proof. (a) Denote Â = A −BR−1BTΠ− ρI. We have ds
dt = −ÂT s+HT g −Πf .

Given an initial condition s(0), the solution to (A.4) is

s(t) = e− ̂AT t

{
s(0) +

∫ t

0

e
̂AT τ [HT g(τ) −Πf(τ)]dτ

}
.(A.9)

It is straightforward to verify that s(0) = − ∫∞
0 e

̂AT τ [HT g(τ)−Πf(τ)]dτ is finite and
is the only initial condition which gives a solution s ∈ Cρ/2([0,∞),Rn), and that any

other initial condition leads to a solution growth rate faster than e(ρ/2)t.
(b) Step 1. Denote the auxiliary equation

dy(t) = (A−BR−1BTΠ)y(t)dt −BR−1BT s(t)dt+ f(t)dt+DdW (t),

where y(0) = x(0). Take any u(·) ∈ U such that J(u(·)) < ∞ (such a control exists
since it may be checked that û(·) has this property), and let x be the associated
solution to (A.1). This further implies

E

∫ ∞

0

e−ρt
[
xT (t)HTHx(t) + u(t)TRu(t)

]
dt < ∞.(A.10)

Denote x̃(t) = x(t) − y(t) and ũ(t) = u(t) + R−1BT [Πx(t) + s(t)]. It may be
checked that

dx̃(t) = (A−BR−1BTΠ)x̃(t)dt+Bũ(t)dt,(A.11)

where x̃(0) = 0. By (A.10), we may show

E

∫ ∞

0

e−ρt|x(t)|2dt < ∞.(A.12)

The proof of (A.12) is postponed to Step 3. Now by (A.12) and the definition of ũ, it
follows that E

∫∞
0 e−ρt|ũ(t)|2dt < ∞, and therefore ũ ∈ U .

Step 2. The cost (A.2) may be written in the form J = E
∫∞
0 e−ρtξ(t)dt, where

ξ(t) = (Hy − g)T (Hy − g) + (Πy + s)TBR−1BT (Πy + s) (� ξ1)

+ x̃THTHx̃+ (ũ −R−1BTΠx̃)TR(ũ−R−1BTΠx̃) (� ξ2)

+ 2(Hx̃)T (Hy − g)− 2(ũ−R−1BTΠx̃)TBT (Πy + s) (� ξ3).

Applying Ito’s formula to e−ρtx̃T (t)[Πy(t) + s(t)] and taking expectation, after
some elementary calculations we obtain

e−ρTE{x̃T (T )[Πy(T ) + s(T )]} = E

∫ T

0

e−ρtζ(t)dt,(A.13)

where 0 < T < ∞ and

ζ(t) = x̃T (HT g −ΠBR−1BT s)− x̃T (HTH +ΠBR−1BTΠ)y + ũTBT (Πy + s).

By (A.11), we may show E|x̃(t)|2 = O(eρt). Furthermore, we may show that
E|y(t)|2 = O(eρ

′t) for some ρ′ ∈ (0, ρ). Hence E
∫∞
0

e−ρt|ζ(t)|dt < ∞. Then it is
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easy to show that E
∫∞
0

e−ρtζ(t)dt = 0 since the left-hand side of (A.13) tends to zero
when T → ∞. Notice that ξ3 = −2ζ. Hence

J(u(·)) = E

∫ ∞

0

e−ρtξ(t)dt =

∫ ∞

0

e−ρt(ξ1 + ξ2)dt

and optimality of the control law û(t) readily follows.
Step 3. We now complete the proof of (A.12). If necessary, a linear transformation

may be used to decompose A into two diagonal blocks A11 and A22, where the real
part of all eigenvalues of A11 is at least ρ/2, and A22 has all eigenvalues with a real
part less than ρ/2; accordingly, the matrices B, Π, H , D and function f , etc. will
be subject to an associated linear transformation. Without introducing additional
notation, we simply assume that A takes the form

A =

[
A11

A22

]
.

We write the dynamics (A.1) by two components

dx1(t) = A11x1(t)dt+B1u(t)dt+ f1(t)dt+D1dW (t),

dx2(t) = A22x2(t)dt+B2u(t)dt+ f2(t)dt+D2dW (t).

Denote H = [H1, H2], where the number of columns in H1 is equal to the dimension
of x1. By the detectability of (H,A− (ρ/2)I), it is straightforward to show that the
pair (H1, A11 − (ρ/2)I) and hence (H1, A11) are observable (see [23, 37]).

Applying Lemma A.1, we obtain

E

∫ ∞

0

e−ρt|x2(t)|2dt < ∞.(A.14)

Next, for any r ∈ [0, 1] we have

x1(t) = eA11rx1(t− r) +

∫ t

t−r

eA11(t−τ)[B1u(τ) + f1(τ)]dτ(A.15)

+

∫ t

t−r

eA11(t−τ)D1dW (τ)

for t ≥ r. By E
∫∞
0

e−ρt|u(t)|2dt < ∞ and elementary estimates, we may find a fixed

C < ∞ (depending on u(·)) such that E
∫∞
r

e−ρt| ∫ t

t−r
eA11(t−τ)B1u(τ)dτ |2dt ≤ C

holds for all r ∈ [0, 1]. By E
∫∞
0

e−ρtxT (t)HTHx(t)dt < ∞ (see (A.10)) and (A.14),

it follows that E
∫∞
r

e−ρtxT
1 (t)H

T
1 H1x1(t)dt < ∞, which combined with (A.15) gives

E
∫∞
r e−ρtxT

1 (t − r)(H1e
A11r)TH1e

A11rx1(t − r)dt < ∞. By the above estimates we
see that there in fact exists a fixed C > 0 such that for all r ∈ [0, 1],

E

∫ ∞

0

e−ρtxT
1 (t)(H1e

A11r)TH1e
A11rx1(t)dt ≤ C.(A.16)

By taking integration with respect to r ∈ [0, 1], we obtain

E

∫ ∞

0

e−ρtxT
1 (t)

[∫ 1

0

(H1e
A11r)TH1e

A11rdr

]
x1(t)dt ≤ C.
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On the other hand, by the observability of the pair (H1, A11), it follows that the

matrix
∫ 1

0 (H1e
A11r)TH1e

A11rdr is positive definite. Hence E
∫∞
0 e−ρt|x1(t)|2dt < ∞,

which combined with (A.14) proves (A.12).
We continue to give the following lemma on a lower bound estimate of the cost

for a perturbed version of the control problem (A.1)–(A.2). Let the dynamics and
cost be given by

dx(t) = Ax(t)dt +Bu(t)dt+ f(t)dt+ ξa(t)dt+DdW (t)(A.17)

and

Jξ(u(·)) = E

∫ ∞

0

e−ρt
{
[Hx(t) − g(t) + ξb(t)]

T [Hx(t)− g(t) + ξb(t)] + uT (t)Ru(t)
}
dt,

where ξa and ξb are random processes with

εa =

{∫ ∞

0

e−ρtE|ξa(t)|2dt
}1/2

< ∞, εb =

{∫ ∞

0

e−ρtE|ξb(t)|2dt
}1/2

< ∞.

It is assumed that W (t), u(t), ξa(t), and ξb(t) are adapted to an underlying filtration
(Ω,F ,Ft, t ≥ 0, P ).

Lemma A.3. Under the assumptions of Lemma A.2, for any u(·) adapted to Ft,
we have

Jξ(u(·)) ≥ J(û(·)) −O(εa + εb),

where J is given by (A.2) and û is given by (A.8), provided that for a fixed constant
C0, the pair (x, u) in (A.17) has the prior upper bound estimate

E

∫ ∞

0

e−ρt(|x|2 + |u|2)dt ≤ C0.(A.18)

Proof. We first write (A.17) in the form

dx = (A−BR−1BTΠ)xdt+Bu′dt−BR−1BT sdt+ fdt+ ξadt+DdW (t),(A.19)

where u′(t) = u(t) +R−1BT [Πx(t) + s(t)]. By (A.18), it follows that

E

∫ ∞

0

e−ρt|u′(t)|2dt ≤ C1,

where C1 < ∞ depends on C0. For given x(0) and u satisfying (A.18), u′ is a
well-defined random process adapted to Ft. We construct the control problem with
dynamics and cost:

dx̄ = (A−BR−1BTΠ)x̄dt+Bu†dt−BR−1BT sdt+ fdt+DdW (t),

(A.20)

J̃(u†(·)) =
∫ ∞

0

e−ρt
{
[Hx̄− g]T [Hx̄− g]

+ [u† −R−1BT (Πx̄+ s)]TR[u† −R−1BT (Πx̄ + s)]
}
dt,
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where x̄(0) = x(0) and u†(t) is adapted to Ft. By Lemma A.2, we see that J̃(u†(·))
attains its minimum when u† ≡ 0, and the resulting optimal cost is equal to J(û(·)).
Hence, we have the lower bound

J̃(u′(·)) ≥ J̃(0) = J(û(·)).(A.21)

Take u† = u′ in (A.20) and let x̄′ be the associated solution. We obtain the estimate∫∞
0 e−ρtE|x̄′(t)|2dt ≤ C2 by Lemma A.1, where C2 depends on C1 but not on (ξa, ξb).
By (A.19)–(A.20), we further obtain∫ ∞

0

e−ρtE|x(t) − x̄′(t)|2dt ≤ C3ε
2
a(A.22)

for some C3 independent of ξa. By the relation

[Hx(t)− g(t) + ξb(t)]
T [Hx(t)− g(t) + ξb(t)]

T + uT (t)Ru(t)

= [Hx̄′ − g +H(x− x̄′) + ξb]
T [Hx̄′ − g +H(x− x̄′) + ξb]

T +ΔT
uRΔu,

where Δu = u′ − R−1BT (Πx̄′ + s) + R−1BTΠ(x̄′ − x), we use (A.22) and Schwarz
inequality to show

Jξ(u(·)) ≥ J̃(u′(·))− C(εa + εb) ≥ J(û(·)) − C(εa + εb),

where the second inequality is due to (A.21), and C depends on C1, C2, C3, but not
on (ξa, ξb).

Appendix B. Proof of Theorem 6. Denote the weighted processes

xj,ρ̂ = e−(ρ̂/2)txj , zκ,ρ̂ = e−(ρ̂/2)tzκ,(B.1)

zρ̂ = e−(ρ̂/2)tz, žκ,ρ̂ = e−(ρ̂/2)tžκ, žρ̂ = e−(ρ̂/2)tž,(B.2)

where j = 0, . . . , N and κ = 1, . . . ,K. Also denote s0,ρ̂ = e−(ρ̂/2)ts0, sκ,ρ̂ = e−(ρ̂/2)tsκ,
and mρ̂ = e−(ρ̂/2)tm. Our method of estimation is to first obtain an equation system
in terms of the states (x0,ρ̂, zρ̂, žρ̂), and then perform SDE estimates.

By (5.4) and Ito’s formula, it follows that

dx0,ρ̂ =

{
[A0 − (ρ̂/2)I]x0,ρ̂ −B0R

−1
0 B

T
0 [P0(x

T
0,ρ̂, z

T
ρ̂ )

T + s0,ρ̂] + F0

K∑
i=1

π
(N)
i ži,ρ̂

}
dt

+ e−(ρ̂/2)tD0dW0

=

{
[A0 − (ρ̂/2)I]x0,ρ̂ −B0R

−1
0 B

T
0 [P0(x

T
0,ρ̂, z

T
ρ̂ )

T + s0,ρ̂] + F0

K∑
i=1

π
(N)
i zi,ρ̂

}
dt

+ F0

K∑
i=1

π
(N)
i (ži,ρ̂ − zi,ρ̂)dt+ e−(ρ̂/2)tD0dW0.(B.3)

For zρ̂, we have the equation

dzρ̂ = [A− (ρ̂/2)I]zρ̂dt+Gx0,ρ̂dt+mρ̂(t)dt.(B.4)
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Next, by (5.6) and Ito’s formula, it follows that

džκ,ρ̂ =
{
[A(κ)− (ρ̂/2)I]žκ,ρ̂ −BR−1

B
T [Pκ(ž

T
κ,ρ̂, x

T
0,ρ̂, z

T
ρ̂ )

T + sκ,ρ̂](B.5)

+ F

K∑
i=1

π
(N)
i zi,ρ̂ +Gx0,ρ̂

}
dt+ F

K∑
i=1

π
(N)
i (ži,ρ̂ − zi,ρ̂)dt

+ (1/Nκ)e
−(ρ̂/2)tD

∑
i∈Iκ

dWi, κ = 1, . . . ,K.

Let each Pκ, κ = 1, . . . ,K, be partitioned as in (4.11). Denote

Fπ(N)

= π(N) ⊗ F, Φ
(N)
1 =

[
G,1K ⊗ Fπ(N) −M2

]
,(B.6)

where M2 is defined as in (4.20). Recall that G may be represented in the form (4.22).
Now (B.5) yields

džρ̂ = [M1 − (ρ̂/2)I]žρ̂dt+Φ
(N)
1

[
x0,ρ̂

zρ̂

]
dt+ 1K ⊗ Fπ(N)

(žρ̂ − zρ̂)dt(B.7)

− e−(ρ̂/2)tζ1dt+ e−(ρ̂/2)tdζ2,

where M1 is defined as in (4.20). In the above,

ζ1 =

⎡⎢⎣ BR−1BT s1
...

BR−1BT sK

⎤⎥⎦ , ζ2 =

⎡⎢⎣ (1/N1)D
∑

i∈I1
Wi

...
(1/NK)D

∑
i∈IK

Wi

⎤⎥⎦ .(B.8)

Denote

Fπ(N)

0 = π(N) ⊗ F0, A
(N)
0 =

[
A0 Fπ(N)

0

G A

]
.

We have the equation⎡⎣ dx0,ρ̂

dzρ̂
džρ̂

⎤⎦ =

[
A

(N)
0 − B0R

−1
0 BT

0 P0 − (ρ̂/2)I 0

Φ
(N)
1 M1 − (ρ̂/2)I

]⎡⎣ x0,ρ̂

zρ̂
žρ̂

⎤⎦ dt

+

⎡⎢⎣ Fπ(N)

0

0nK×nK

1K ⊗ Fπ(N)

⎤⎥⎦ (žρ̂ − zρ̂)dt− e−(ρ̂/2)t

⎡⎣ B0R
−1
0 BT

0 s0
−m
ζ1

⎤⎦ dt(B.9)

+ e−(ρ̂/2)t

⎡⎣ D0dW0

0nK×1

dζ2

⎤⎦ ,

where ζ1 and ζ2 are given by (B.8). Notice that limN→∞ Φ
(N)
1 = [G,1K ⊗ Fπ −M2],

limN→∞ Fπ(N)

0 = Fπ
0 , limN→∞ Fπ(N)

= Fπ, and limN→∞ A
(N)
0 = A0. Denote

ξ = (xT
0,ρ̂, z

T
ρ̂ , ž

T
ρ̂ )

T .(B.10)

Recalling (5.7)–(5.8), we have Hurwitz matrices M1 − (ρ̂/2)I, A
(N)
0 − B0R

−1
0 BT

0 P0 −
(ρ̂/2)I for all sufficiently large N , and supt≥0 e

−(ρ̂/2)t(|s0|+ |m|+ |ζ1|) < ∞. By (B.9)
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and elementary linear SDE estimates, we may find constants a1 > 0 and C, both
independent of t, N such that for all N ≥ N ′ with some sufficiently large N ′, we have

E|ξ(t)|2 ≤ C + CE

∣∣∣∣∫ t

0

e−a1(t−τ)|žρ̂(τ) − zρ̂(τ)|dτ
∣∣∣∣2

≤ C + C

∫ t

0

e−a1(t−τ)dτ

∫ t

0

e−a1(t−τ)E|žρ̂(τ)− zρ̂(τ)|2dτ(B.11)

≤ C + C

∫ t

0

e−a1(t−τ)E|žρ̂(τ) − zρ̂(τ)|2dτ,(B.12)

where (B.11) is obtained by Schwarz inequality.
We continue to estimate the integrand E|žρ̂(t)−zρ̂(t)|2 in (B.12). First, by (B.4)–

(B.5) and the relations (4.15)–(4.16), it follows that

d(žκ,ρ̂ − zκ,ρ̂)(B.13)

=

{
[A(κ) −BR−1BTPκ,11 − (ρ̂/2)I](žκ,ρ̂ − zκ,ρ̂) + F

K∑
i=1

π
(N)
i (ži,ρ̂ − zi,ρ̂)

}
dt

+ F

K∑
i=1

(π
(N)
i − πi)zi,ρ̂dt+ (1/Nκ)e

−(ρ̂/2)tD
∑
i∈Iκ

dWi, κ = 1, . . . ,K.

This equation may be written in the compact form

d(žρ̂ − zρ̂) = [M1 − (ρ̂/2)I + 1K ⊗ Fπ(N)

](žρ̂ − zρ̂)dt

+ [1K ⊗ (π(N) − π)⊗ F ]zρ̂dt+ e−(ρ̂/2)tdζ2,

where ζ2 is given as in (B.8). Again, by use of the fact limN→∞ 1K⊗Fπ(N)

= 1K⊗Fπ

and (A3), we apply SDE estimates to obtain

E|žρ̂(t)− zρ̂(t)|2 ≤ C

[
1/N +

∫ t

0

e−a2(t−τ)ε2NE|zρ̂(τ)|2dτ
]

≤ C

[
1/N +

∫ t

0

e−a2(t−τ)ε2NE|ξτ |2dτ
]
,(B.14)

where a2 > 0 is a fixed constant independent of N ≥ N ′′ for a sufficiently large
N ′′ > 0, and C is independent of t, N . Let a = min{a1, a2} and Δt = E|ξ(t)|2 for ξ
defined in (B.10). Now it follows from (B.12) and (B.14) that

Δt ≤ C + C

∫ t

0

e−a(t−τ)

∫ τ

0

ε2Ne−a(τ−h)Δhdhdτ

= C + Cε2N

∫ t

0

(t− h)e−a(t−h)Δhdh

≤ C +

(
max
0≤τ≤t

Δτ

)
ε2NC

∫ t

0

(t− h)e−a(t−h)dh ≤ C +

(
max
0≤τ≤t

Δτ

)
ε2N (C/a2)

for N ≥ max{N ′, N ′′}, which implies

max
0≤τ≤t

Δτ ≤ C +

(
max
0≤τ≤t

Δτ

)
ε2N (C/a2).
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We pick N (0) ≥ max{N ′, N ′′} such that ε2N(C/a2) < 1/2 for all N ≥ N (0). Hence, for
all N ≥ N (0), we have max0≤τ≤tΔτ ≤ C0 for some C0 independent of t, N , so that

sup
t≥0

E|ξ(t)|2 ≤ C0.(B.15)

Based on (B.15), we may further use (5.5) to obtain sup1≤i≤N supt≥0 E|xi,ρ̂(t)|2 ≤
C0 since each matrix A(θi) − BR−1BTPθi,11 − (ρ̂/2)I is Hurwitz. Now we combine
(B.14) with (B.15) to obtain

sup
t≥0

E|žρ̂(t)− zρ̂(t)|2 ≤ C1(1/N + ε2N),

where C1 is independent of N ≥ N (0). This completes the proof.

Appendix C. Proof of Theorem 10.

Lemma C.1. Let y(t) be a nonnegative scalar integrable function of t on [0, T ]
and σ > 0. Then for all δ ∈ [0, σ],∫ T

0

e−σt

[
y(t)− δ

∫ t

0

y(τ)dτ

]
dt ≥ 0.

Proof. Since∫ T

0

e−σtδ

∫ t

0

y(τ)dτdt =

∫ T

0

δy(τ)

∫ T

τ

e−σtdtdτ

≤
∫ T

0

(δ/σ)y(τ)e−στdτ ≤
∫ T

0

y(τ)e−στdτ,

the lemma follows.
Lemma C.2. Suppose (P0, A,G, Pκ, κ = 1, . . . ,K) is a stabilizing consistent so-

lution to (4.18) and (A3′) holds. Define the matrix

Γ =

⎡⎢⎣ A0 −B0R
−1
0 BT

0 P0,11 −B0R
−1
0 BT

0 P0,12 Fπ
0

G A 0
G −M2 M1 + 1K ⊗ Fπ

⎤⎥⎦ ,(C.1)

where P0,11, P0,12 are given by (4.11), and M1, M2 are defined by (4.20). Then Γ is
Hurwitz.

Proof. Let x†
0, z

†, and ž† each be in Rn. We show that Γ is Hurwitz with the aid
of the ODE

d

dt

⎡⎢⎣ x†
0

z†

ž†

⎤⎥⎦ = Γ

⎡⎢⎣ x†
0

z†

ž†

⎤⎥⎦ .(C.2)

First, by the relation (4.21) we can check that

d

dt
(z† − ž†) = (M1 + 1K ⊗ Fπ)(z† − ž†).
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Since M1 + 1K ⊗ Fπ is Hurwitz, given any initial condition (x†
0(0), z

†(0), ž†(0)), we
have

lim
t→∞ |z†(t)− ž†(t)| = 0.(C.3)

Subsequently, we may write (C.2) in the equivalent form

d

dt

⎡⎢⎣ x†
0

z†

ž†

⎤⎥⎦ = Γ̂

⎡⎢⎣ x†
0

z†

ž†

⎤⎥⎦+

⎡⎢⎣ Fπ
0 (ž

† − z†)

0nK×1

1K ⊗ Fπ(ž† − z†)

⎤⎥⎦ ,

where

Γ̂ =

⎡⎢⎣ A0 −B0R
−1
0 BT

0 P0,11 Fπ
0 −B0R

−1
0 BT

0 P0,12 0

G A 0
G 1K ⊗ F −M2 M1

⎤⎥⎦
is Hurwitz by Proposition 2 and the fact that (P0, A,G, Pκ, κ = 1, . . . ,K) is a stabiliz-
ing consistent solution to (4.18). Hence, by (C.3) and the stability of Γ̂, given any ini-

tial condition (x†
0(0), z

†(0), ž†(0)), we may show limt→∞(|x†
0(t)|+ |z†(t)|+ |ž†(t)|) = 0,

which implies that Γ is Hurwitz.
Proof of Theorem 10. The proof is given in two steps.
Step 1. The case for the major player A0 to use an alternative strategy. Let the

control of A0 be denoted by u0, and let the minor players take the control law (5.3).
The closed-loop system leads to the equations

dx0 =
{
A0x0 +B0u0 + F0x

(N)
}
dt+D0dW0(t),(C.4)

dz = Azdt+Gx0dt+mdt,(C.5)

džκ =
{
A(κ)žκ −BR−1

B
T [Pκ(ž

T
κ , x

T
0 , z

T )T + sκ] + Fx(N) +Gx0

}
dt(C.6)

+ (1/Nκ)D
∑
i∈Iκ

dWi, κ = 1, . . . ,K.

We may write (C.4)–(C.6) in the compact form

d

⎡⎣ x0

z
ž

⎤⎦ = M
(N)
3

⎡⎣ x0

z
ž

⎤⎦ dt+

⎡⎣ B0u0

0nK×1

0nK×1

⎤⎦ dt+

⎡⎣ 0n×1

m
−ζ1

⎤⎦ dt+

⎡⎣ D0dW0

0nK×1

dζ2

⎤⎦ ,

where ζ1 and ζ2 are given by (B.8), and M
(N)
3 is specified as shown below (6.1).

For 0 ≤ j ≤ N and the control laws ûj given by (5.2)–(5.3), denote û−j =
(û0, . . . , ûj−1, ûj+1, . . . , ûN). If u0 is simply taken as û0, we may apply Theorem 6
to show that the associated cost J0(û0, û−0) is upper bounded by a constant C0

independent of N ≥ N (0), where N (0) is specified as in Theorem 6. For Step 1 we
assume N ≥ N (0). By our convention, each of the constants C, C0, etc. used below
may vary from place to place. It suffices to restrict attention to all u0 such that

J0(u0, û−0)(C.7)

= E

∫ ∞

0

e−ρt
{
[x0 −H0x

(N) − η0]
TQ0[x0 −H0x

(N) − η0] + uT
0 R0u0

}
dt ≤ C0,
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which implies that for each r ∈ [0, 1],

E

∫ ∞

r

e−ρt
{
[x0 −H0x

(N)]TQ0[x0 −H0x
(N)] + uT

0 R0u0

}
dt

= E

∫ ∞

r

e−ρt
[
(xT

0 , z
T , žT )(L

(N)
0,H)TL

(N)
0,H(xT

0 , z
T , žT )T + uT

0 R0u0

]
dt ≤ C0,

(C.8)

where L
(N)
0,H is specified as shown below (6.1).

Similarly to the derivation of (A.16) in Appendix A, we may show from (C.8)
that

E

∫ ∞

r

e−ρt
[
(xT

0 , z
T , žT )(eM

(N)
3 r)T (L

(N)
0,H)TL

(N)
0,HeM

(N)
3 r(xT

0 , z
T , žT )T

] ∣∣∣
(t−r)

dt ≤ C0

for each r ∈ [0, 1], where C0 does not depend on (r,N). Hence

E

∫ ∞

0

e−ρt
[
(xT

0 , z
T , žT )(eM

(N)
3 r)T (L

(N)
0,H)TL

(N)
0,HeM

(N)
3 r(xT

0 , z
T , žT )T

] ∣∣∣
t
dt ≤ C0.

(C.9)

By the observability of the pair (L0,H ,M3) and the convergence relation

lim
N→∞

M
(N)
3 = M3, lim

N→∞
L
(N)
0,H = L0,H ,

there exists a sufficiently large N (1) ≥ N (0) such that for all N ≥ N (1) we have

c1I ≤
∫ 1

0

(
eM

(N)
3 r

)T (
L
(N)
0,H

)T

L
(N)
0,HeM

(N)
3 rdr ≤ c2I,(C.10)

where the two constants 0 < c1 ≤ c2 < ∞ are independent of N . In proving (C.10),
we have used the continuous dependence of observability on parameters of a linear
system [37, p. 44]. By taking integration with respect to r on [0, 1] in (C.9), it follows
from (C.10) and (C.7) that

E

∫ ∞

0

e−ρt
(|x0|2 + |z|2 + |ž|2 + |u0|2

)
dt ≤ C0.(C.11)

Letting ζ2 be defined by (B.8), by (C.5)–(C.6) we have

d(ž − z) = (M1 + 1K ⊗ Fπ)(ž − z)dt+ (π(N) − π)⊗ 1K ⊗ F ždt+ dζ2.

Since (A3′) holds and (C.11) gives E
∫∞
0 e−ρt|ž(t)|2dt ≤ C0, we may use the method

in proving Lemma A.1 to show∫ ∞

0

e−ρtE|ž(t)− z(t)|2dt ≤ C(1/N + ε2N)(C.12)

for N ≥ N (1), where the component 1/N results from the term dζ2 and the initial
condition (ž − z)(0).

We continue to give a refined upper bound for J0(û0, û−0). In fact, if u0 = û0,
we may use (5.9), Proposition 8, and elementary estimates to show that

J0(û0, û−0) ≤ J̄0(û
†
0) + C(1/

√
N + εN ),(C.13)
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where J̄0(û
†
0) is the optimal cost associated with the control û†

0 in the control problem
with dynamics

dx̄0(t) =
{
A0x̄0(t) +B0u

†
0 + Fπ

0 z̄(t)
}
dt+D0dW0(t),

dz̄(t) = Az̄(t)dt +Gx̄0(t)dt+m(t)dt,

with initial conditions x̄(0) = x(0), z̄(0) = 0 and cost

J̄0(u
†
0(·)) = E

∫ ∞

0

e−ρt
{
[x̄0 −Hπ

0 z̄ − η0]
TQ0[x̄0 −Hπ

0 z̄ − η0] + (u†
0)

TR0u
†
0

}
dt.

To obtain a lower bound for J0(u0, û−0) subject to (C.11), in (C.4) we write

F0x
(N) = Fπ

0 z + Fπ
0 (ž − z) + (Fπ(N)

0 − Fπ
0 )ž � Fπ

0 z + ξa and in J0(u0, û−0) write

H0x
(N) = Hπ

0 z + Hπ
0 (ž − z) + (Hπ(N)

0 − Hπ
0 )ž � Hπ

0 z + ξb, where Hπ
0 = π ⊗ H0

and Hπ(N)

0 = π(N) ⊗H0. By (C.11)–(C.12), we may view (C.4)–(C.5) as a perturbed
control model with state (x0, z) and perturbation (ξa, ξb) and apply Lemma A.3 to
show

J0(u0, û−0) ≥ J̄0(û
†
0)−O(1/

√
N + εN).(C.14)

It follows from (C.13) and (C.14) that J0(u0, û−0) ≥ J0(û0, û−0)−O(1/
√
N + εN).

Step 2. The case for any given minor player to use an alternative strategy. With-
out loss of generality, we consider alternative strategies of Ai0 , which is a k-type
minor player. After all agents, except Ai0 , apply the control laws (5.2) and (5.3), the
closed-loop dynamics of A0 and Ai, i �= i0, may be written in the form

dx0 =
{
A0x0 −B0R

−1
0 B

T
0 [P0(x

T
0 , z

T )T + s0] + F0x
(N)

}
dt+D0dW0,(C.15)

dxi =
{
A(θi)xi −BR−1

B
T [Pθi(x

T
i , x

T
0 , z

T )T + sθi ] + Fx(N) +Gx0

}
dt(C.16)

+DdWi, 1 ≤ i ≤ N, i �= i0,

where

dz = Azdt+Gx0dt+mdt,(C.17)

with the initial condition z(0) = 0. We also write the dynamics of Ai0 as follows:

dxi0 =
{
A(θi0 )xi0 +Bui0 + Fx(N) +Gx0

}
dt+DdWi0 .

Similarly to (C.7), we restrict attention to N ≥ N (0) and control ui0 such that

E

∫ ∞

0

e−ρt
{
[xi0 −Hx0 − (Ĥx(N) + η)]TQ[xi0 −Hx0 − (Ĥx(N) + η)](C.18)

+ uT
i0Rui0

}
dt ≤ C,

where C is independent of N . Since Q is nonsingular, this implies

E

∫ ∞

0

e−ρt
∣∣∣xi0 −Hx0 − Ĥx(N)

∣∣∣2 dt ≤ C.(C.19)
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Below we aim to establish a prior upper bound for E
∫∞
0

e−ρt|xi0 (t)|2dt when (C.18)
holds.

Corresponding to (C.16), for 1 ≤ j ≤ K and j �= k, define ž′j = (1/Nj)
∑

i∈Ij
xi,

ž′k = (1/(Nk − 1))
∑

i∈Ik\{i0}
xi,

and ž′ = [(ž′1)
T , . . . , (ž′K)T ]T . Without loss of generality, we restrict attention to large

N such that Nk > 1. The SDE for (x0, z, ž
′) may be expressed in the form⎡⎣ dx0

dz
dž′

⎤⎦ = Γ(N)

⎡⎣ x0

z
ž′

⎤⎦ dt+D
(N)
1 (xi0/N)dt+ ζ3dt+ dζ4,(C.20)

where Γ(N) and D
(N)
1 may be determined in a straightforward manner. In fact

lim
N→∞

Γ(N) = Γ,(C.21)

where Γ is defined by (C.1) and is Hurwitz by Lemma C.2, and D
(N)
1 also converges

to a finite limit when N → ∞. The term ζ3 is a linear combination of s0, . . . , sK ,m;
ζ4 is determined from the Brownian motions Wj , 0 ≤ j ≤ N , j �= i0. By solving the
linear SDE (C.20) with xi0 treated as an exogenous term, we may express (x0, z, ž

′)
in the form⎡⎣ x0(t)

z(t)
ž′(t)

⎤⎦ = eΓ
(N)t

⎡⎣ x0(0)
z(0)
ž′(0)

⎤⎦+

∫ t

0

eΓ
(N)(t−τ)(1/N)D

(N)
1 xi0 (τ)dτ + ζ5,(C.22)

where ζ5 depends on s0, . . . , sK ,m and the Brownian motions. Recall that Γ is Hur-
witz and (C.21) holds. Taking a sufficiently large N (2) ≥ N (0), for N ≥ N (2) we
combine (C.19) with (C.22) to obtain

E

∫ ∞

0

e−ρt

∣∣∣∣[I − (1/N)Ĥ ]xi0(t)−D
(N)
2

∫ t

0

eΓ
(N)(t−τ)(1/N)D

(N)
1 xi0 (τ)dτ

∣∣∣∣2 dt ≤ C,

(C.23)

where (1/N)Ĥxi0 is contained in Ĥx(N), and D
(N)
2 is determined from (H, Ĥ, π(N))

and has a finite limit when N → ∞. Now, by (C.23) and the inequality (α − β)2 ≥
α2/2− β2, for N ≥ N (2) we have

E

∫ ∞

0

e−ρt
{
(1/2)

∣∣∣[I − (1/N)Ĥ ]xi0 (t)
∣∣∣2(C.24)

−
∣∣∣D(N)

2

∫ t

0

eΓ
(N)(t−τ)(1/N)D

(N)
1 xi0 (τ)dτ

∣∣∣2}dt ≤ C.

Without loss of generality, we may assume for all N ≥ N (2),

(1/2)[I − (1/N)Ĥ ]T [I − (1/N)Ĥ] ≥ (1/3)I.
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Then it follows from (C.24) that for all N ≥ N (2),

E

∫ ∞

0

e−ρt

{
(1/3)|xi0(t)|2 −

∣∣∣∣D(N)
2

∫ t

0

eΓ
(N)(t−τ)(1/N)D

(N)
1 xi0(τ)dτ

∣∣∣∣2
}
dt ≤ C.

(C.25)

Next we show that

E

∫ ∞

0

e−ρt

{
(1/4)|xi0(t)|2 −

∣∣∣∣D(N)
2

∫ t

0

eΓ
(N)(t−τ)(1/N)D

(N)
1 xi0(τ)dτ

∣∣∣∣2
}
dt ≥ 0

(C.26)

for all sufficiently large N . By (C.21) we may find fixed constants c1 > 0 and c2 > 0,
both independent of t, N such that∣∣∣∣D(N)

2

∫ t

0

eΓ
(N)(t−τ)(1/N)D

(N)
1 xi0(τ)dτ

∣∣∣∣2 ≤ c1
N2

∫ t

0

|eΓ(N)(t−τ)|2dτ
∫ t

0

|xi0(τ)|2dτ

≤ c2
N2

∫ t

0

|xi0 (τ)|2dτ

for all sufficiently large N . Now it follows from Lemma C.1 that∫ ∞

0

e−ρt

{
(1/4)|xi0(t)|2 −

∣∣∣∣D(N)
2

∫ t

0

eΓ
(N)(t−τ)(1/N)D

(N)
1 xi0(τ)dτ

∣∣∣∣2
}
dt

≥
∫ ∞

0

e−ρt

{
(1/4)|xi0(t)|2 −

c2
N2

∫ t

0

|xi0 (τ)|2dτ
}
dt ≥ 0

when N is sufficiently large, so that (C.26) holds. Hence it follows from (C.25) and
(C.26) that

E

∫ ∞

0

e−ρt|xi0(t)|2dt ≤ C(C.27)

for all sufficiently largeN , where C is independent ofN . By combining (C.18), (C.22),
and the prior estimate (C.27), it may be further shown that there exists a fixed C > 0
such that

E

∫ ∞

0

e−ρt
(|xi0 |2 + |ui0 |2 + |x0|2 + |z|2 + |ž′|2) dt ≤ C(C.28)

for all sufficiently large N . By use of (C.28) and parallel to (C.12), we may take a
sufficiently large N (3) ≥ N (2) and apply elementary SDE estimates to show that for
all N ≥ N (3),

∫ ∞

0

e−ρtE

∣∣∣∣∣x(N) −
K∑

k=1

πkzk

∣∣∣∣∣
2

dt ≤ C(1/N + ε2N ).(C.29)

Similarly to the treatment in Step 1, we apply Lemma A.3 to show that if the
control of Ai0 changes from ûi0 to another one, it can reduce its cost by at most
O(1/

√
N + εN ). This completes the proof.
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