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DEGENERATE STOCHASTIC CONTROL PROBLEMS WITH
EXPONENTIAL COSTS AND WEAKLY COUPLED DYNAMICS:

VISCOSITY SOLUTIONS AND A MAXIMUM PRINCIPLE∗

MINYI HUANG† , PETER E. CAINES‡ , AND ROLAND P. MALHAMÉ§

Abstract. This paper considers a class of optimization problems arising in wireless communica-
tion systems. We analyze the optimal control and the associated Hamilton–Jacobi–Bellman (HJB)
equations. It turns out that the value function is a unique viscosity solution of the HJB equation
in a certain function class. To deal with the fast growth condition of the value function in estab-
lishing uniqueness, we construct particular semiconvex/semiconcave approximations for the viscosity
sub/supersolutions, and obtain a maximum principle on unbounded domains. The localized enve-
lope function technique introduced in this paper permits an analysis of the uniqueness of viscosity
solutions defined on unbounded domains in cases with very general growth conditions when com-
bined with appropriate system dynamics. The optimization problem with state constraints is also
considered.

Key words. degenerate stochastic control, power control, HJB equations, dynamic program-
ming, viscosity solutions

AMS subject classifications. 93E20, 93E03, 49L25, 49L20

DOI. 10.1137/S0363012902417644

1. Introduction. This paper is concerned with a class of optimization problems
arising in power control for wireless communication systems, and forms a mathemat-
ical foundation for the results in [7, 8]. We will first formulate a class of degenerate
stochastic control problems, which take the approach of regulating the state of a
controlled process where an exogenous random parameter process is involved in the
performance function, and then we use a communications application example to give
a background illustration for the general formulation.

The random parameter process and the controlled process are denoted by xt ∈ R
n

and pt ∈ R
n, t ∈ R+, respectively. Suppose that x is modeled by the stochastic

differential equation

dx = f(t, x)dt + σ(t, x)dw, t ≥ 0,(1.1)

where f and σ are the drift and diffusion coefficients, respectively; w is an n dimen-
sional standard Wiener process with covariance Ewtw

τ
t = tI; and the initial state x0

is independent of {wt, t ≥ 0} with finite exponential moment, i.e., Ee2|x0| < ∞.
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The process p is governed by the model

dp = g(t, x, p, u)dt, t ≥ 0,(1.2)

where the component gi(t, x, p, u), 1 ≤ i ≤ n, controls the size of the increment dpi
at the time instant t, u ∈ R

n, |ui| ≤ uimax, 1 ≤ i ≤ n. Without loss of generality we
set uimax = 1, and we shall write

x = [x1, . . . , xn]τ , p = [p1, . . . , pn]τ , u = [u1, . . . , un]τ .

In the regulation of p, we introduce the following cost function:

J = E

∫ T

0

[pτC(x)p + 2Dτ (x)p]dt,(1.3)

where T < ∞; C(x) and D(x) are an n×n positive definite matrix and an n×1 vector,
respectively; and the components of C(x) and D(x) are exponential functions of linear
combinations of xi, 1 ≤ i ≤ n. For simplicity, in this paper we take Cij(x) = cije

xi+xj ,
Di(x) = die

xi +si for 1 ≤ i, j ≤ n. This particular structure of the weight coefficients
indicates that in the cost function each pi is directly associated with the parameter
component xi for 1 ≤ i ≤ n. Specifically, an expansion of the cost integrand will
produce entries in the form of cij(e

xipi)(e
xjpj), die

xipi, sipi, 1 ≤ i, j ≤ n. Intuitively,
such a cost structure indicates that the relative weight of each pi is influenced only
by the process xi. The more general case of expressing the components of C(x) and
D(x) as exponential functions of general linear combinations of xi, 1 ≤ i ≤ n, can
be considered without further difficulty. We will give the complete optimal control
formulation in section 2, where the technical assumptions of weak coupling for the
dynamics (1.1)–(1.2) will be introduced.

1.1. The stochastic power control example. We now briefly describe the
motivating stochastic power control problem for lognormal fading channels. In an
urban environment, due to long distance transmission and reflections, the power at-
tenuations of wireless networks are described by lognormal random processes. Let
xi(t), 1 ≤ i ≤ n, denote the power attenuation (expressed in dBs and scaled to the
natural logarithm basis) at the instant t of the ith mobile user, and let αi(t) = exi(t)

denote the actual attenuation. Based upon the work in [1], the power attenuation
dynamics are given as a special form of (1.1):

dxi = −ai(xi + bi)dt + σidwi, t ≥ 0, 1 ≤ i ≤ n.(1.4)

In (1.4) the constants ai, bi, σi > 0, 1 ≤ i ≤ n. See [1] for a physical interpretation
of the parameters, and furthermore, an experimental justification of the lognormal
attenuation modeling may be found in the communications literature [5] using discrete
time measurements. In a network, at time t the ith mobile user sends its power pi(t),
and the received power at the base station is exi(t)pi(t). The mobile user has to adjust
its power pi in real time so that a certain communication quality of service (QoS) is
maintained. In [6, 7] the adjustment of the (sent) power vector p for the n users is
modeled by simply taking g(t, x, p, u) = u in (1.2), which is called the rate adjustment
model. Based upon the system signal-to-interference ratio (SIR) requirements, the
following averaged integrated performance function,

J = E

∫ T

0

{
n∑

i=1

[
exipi − μi

(
n∑

j=1

exjpj + η

)]2

+ λ

n∑
i=1

pi

}
dt,(1.5)



DEGENERATE STOCHASTIC CONTROL PROBLEMS 369

was employed in [7, 8], where η > 0 is the system background noise intensity, λ ≥ 0,
and μi, 1 ≤ i ≤ n, is a set of positive numbers determined from the SIR requirements.
The resulting power control problem is to adjust u as a function of the system state
(x, p) so that the above performance function is minimized.

1.2. The main contents and organization. The analysis in this paper treats
a general class of performance functions that have an exponential growth rate with
respect to xi, 1 ≤ i ≤ n; hence this analysis covers the cost function in (1.5) and differs
from that appearing in most stochastic control problems in the literature, where linear
or polynomial growth conditions usually pertain [3, 12]. Two novel features of the class
of models (1.1)–(1.2) are (i) neither the drift nor the diffusion of the state subprocess
x is subject to control, and hence x may be regarded as an exogenous signal, and
(ii) further, the controlled state subprocess p has no diffusion part. Hence (1.1)–(1.2)
gives rise to degenerate stochastic control systems. Optimization of such systems
leads to degenerate Hamilton–Jacobi–Bellman (HJB) equations, which in general do
not admit classical solutions [4, 12].

This paper deals with the mathematical control theoretic questions arising from
the class of stochastic optimal control problems considered in [7, 8], where some ap-
proximation and numerical methods are proposed for implementation of the control
laws. For the resulting degenerate HJB equations, we adopt viscosity solutions and
show that the value function of the optimal control is a viscosity solution. To prove
uniqueness of the viscosity solution, we develop a localized semiconvex/semiconcave
approximation technique. Specifically, we introduce particular localized envelope
functions on the unbounded domain to generate semiconvex/semiconcave approxi-
mations on any compact set. Compared to previous works [4, 12], by use of the set
of envelope functions we can treat very rapid growth conditions, and we note that no
Lipschitz or Hölder-type continuity assumption is required for the function class in-
volved. It is worthwhile to note that the localized envelope functions may be applied
to generate local semiconvex/semiconcave approximations for viscosity solutions in
risk-sensitive stochastic control problems with degenerate diffusions in which the cost
involves an exponential function and usually has a very rapid growth.

We also consider the optimal control subject to state constraints, which leads
to the formulation of constrained viscosity solutions to the associated second order
HJB equations; this part is parallel to [11], where a first order HJB equation is
investigated. The paper is organized as follows: in section 2 we state the existence
and uniqueness of the optimal control and show that the value function is a viscosity
solution to a degenerate HJB equation; we then give two theorems as the main results
about the solution of the HJB equation. Section 3 is devoted to introducing a class
of semiconvex/semiconcave approximations for continuous functions; this technique
enables us to treat viscosity solutions with rapid growth. In section 4, we analyze
the HJB equation and prove a maximum principle by which it follows that the HJB
equation has a unique viscosity solution in a certain function class. Section 5 considers
the control problem subject to state constraints.

Finally, we remark that in the case when an additional control term is introduced
to the state subprocess x to give mathematically more general dynamics, one can
also derive an HJB equation for the corresponding optimal control problem, which
is interesting in its own right, and the semiconvex/semiconcave approximations and
uniqueness analysis procedure developed in sections 3 and 4 may still be carried out
under appropriate conditions. However, without further conditions for the dynamics
of x in the controlled case, in general the control problem needs to be formulated
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in a weak solution framework, and the resulting analysis is not in the scope of the
present paper.

2. The optimal control and HJB equations. We define

z =

(
x
p

)
, ψ =

(
f
g

)
, G =

(
σ

0n×n

)
.

We now write (1.1) and (1.2) together in the vector form

dz = ψdt + Gdw, t ≥ 0.(2.1)

In the following analysis we will denote the state variable by (x, p) or z, or in a
mixing form; as we do in section 4, we may also write the arguments for the functions
in (1.1)–(1.2) in a unified way in terms of (t, z). We write the integrand in (1.3) as
l(z) = l(x, p) = pτC(x)p + 2Dτ (x)p. For notational clarity, hereafter we use xt with
a real-valued subscript t to denote the value of the vector process x at time t, and
xi with an integer subscript i to denote the ith component of x; the interpretation of
the notation should be clear from the context. This convention also holds for other
vector processes involved in the analysis.

The admissible control set is specified as

U = {u(·) | ut is adapted to σ(zs, s ≤ t) and ut ∈ U
�
= [−1, 1]n ∀0 ≤ t ≤ T}.

As is stated in the introduction, the initial state vector is independent of the n × 1
Wiener process wt, t ≥ 0; we make the additional assumption that p has a determinis-
tic initial value p0 at t = 0. Then it is easily verified that σ(zs, s ≤ t) = σ(xs, s ≤ t).

Define L = {u(·) | u is adapted to σ(zs, s ≤ t), ut ∈ R
n and E

∫ T

0
|us|2ds < ∞}. If

we endow L with an inner product 〈u, u′〉 �
= E

∫ T

0
uτu′ds for u, u′ ∈ L, then L con-

stitutes a Hilbert space with the induced norm ‖u‖ = 〈u, u〉 1
2 ≥ 0, u ∈ L. Under this

norm, U is a bounded, closed, and convex subset of L. Finally, the cost associated
with the system (2.1) and a control u ∈ U is specified to be

J(s, z, u) = E

[∫ T

s

l(zt)dt|zs = z

]
, z ∈ R

2n,(2.2)

where s ∈ [0, T ] is taken as the initial time of the system; further, we set the value
function

v(s, z) = inf
u∈U

J(s, z, u), z ∈ R
2n,

and simply write J(0, z, u) as J(z, u). The following assumptions on the time interval
[0, T ] will be used in our further analysis.

(H1) In (1.1)–(1.2), f ∈ C([0, T ]×R
n,Rn), σ ∈ C([0, T ]×R

n,Rn×n), g ∈ C([0, T ]×
R

3n,Rn) and f , σ, g satisfy a uniform Lipschitz condition; i.e., there exists a constant
C0 > 0 such that |f(t, x)−f(s, y)| ≤ C0(|t−s|+|x−y|), |σ(t, x)−σ(s, y)| ≤ C0(|t−s|+
|x−y|), |g(t, x, p, u)−g(s, x, q, u)| ≤ C0(|t−s|+|p−q|), and |g(t, x, p, u)−g(t, 0, p, u)| ≤
C0 for all t, s ∈ [0, T ], u ∈ U , and x, y, p, q ∈ R

n. In addition, there exists a constant
Cσ such that |σij(t, x)| ≤ Cσ for (t, x) ∈ [0, T ] × R

n and 1 ≤ i, j ≤ n.
(H2) For 1 ≤ i ≤ n, fi(x) can be written as fi(x) = −ai(t)xi + f0

i (t, x), where
ai(t) ≥ 0 for t ∈ [0, T ], and sup[0,T ]×Rn |f0

i (t, x)| ≤ Cf0 for a constant Cf0 > 0.
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Throughout this paper we assume that (H1) holds. (H2) is used in Theorems 2.5
and 2.6 for proving uniqueness of the viscosity solution. Clearly (H2) holds for the
lognormal fading channel model in the power control example.

Remark 1. Assumption (H1) ensures existence and uniqueness of the solution to
(2.1) for any fixed u ∈ U , where the Lipschitz condition with respect to t will be used
to obtain certain estimates in the proof of uniqueness of the viscosity solution. Here
σ is assumed to be bounded so as to lead to a finite cost for any initial state and
admissible control u.

From (H1)–(H2) it is seen that the system model has the following important
features: first, in the diffusion process x the evolution of xi does not receive strong
influence from the other state component xk, k 
= i, in the sense that the cross term
f0
i (t, x) is bounded by a constant; second, an arbitrary increase of x alone in the

function g(t, x, p, u) does not result in an unbounded increase in the magnitude of g,
and hence x imposes only a relatively weak impact on the evolution of p. Due to
the above features, we shall refer to the model (1.1)–(1.2) analyzed in this paper as
having weakly coupled dynamics, and (H2) will be conveniently referred to as the weak
coupling condition for x, which will be used to establish uniqueness of the viscosity
solution.

Proposition 2.1 (see [7, 8]). Assuming in the control model (1.2) that g(t, x, p, u)
is linear in p and u, i.e., that there exist continuous matrix functions At, Bt on [0, T ]
such that g(t, x, p, u) = Atp + Btu, then there exists an optimal control û ∈ U such
that J(x0, p0, û) = infu∈U J(x0, p0, u), where (x0, p0) is the initial state at time s = 0;
if, in addition, Bt is invertible for all t ∈ [0, T ], then the optimal control û is unique
and uniqueness holds in the following sense: if ũ ∈ U is another control such that
J(x0, p0, ũ) = J(x0, p0, û), then PΩ(ũs 
= ûs) > 0 only on a set of times s ∈ [0, T ] of
Lebesgue measure zero, where Ω is the underlying probability sample space.

Proposition 2.2. Assuming (H1)–(H2), the value function v is continuous on
[0, T ] × R

2n and

|v(s, z)| ≤ C

[
1 +

n∑
i=1

e4zi +

2n∑
i=n+1

z4
i

]
,(2.3)

where C > 0 is a constant independent of (s, z).
Proof. The continuity of v can be established by use of (H1) and the continuous

dependence of the cost (2.2) on the initial condition for the system (2.1) when u ∈ U
is fixed. For an initial state zs = z and any fixed u ∈ U , using (H2), we express zi(t),
1 ≤ i ≤ n, in terms of zi|t=0 with a bounded term involving zk(s), 0 ≤ s ≤ t, k 
= i,
and get

sup
0≤t≤T

Ee4zi(t) ≤ C1

(
1 + e4zi|t=0

)
,

where C1 > 0. By use of the structure of C(x) and D(x) in the cost integrand l, we
obtain the estimates in a straightforward way,

|J(s, z, u)| ≤ E

∫ T

s

|l(zt)|dt ≤ E

∫ T

s

C2

[
1 +

n∑
i=1

e4zi(t) +

2n∑
i=n+1

z4
i (t)

]
dt

≤ C3

[
1 +

n∑
i=1

e4zi +

2n∑
i=n+1

z4
i

]
,

for constants C2, C3 independent of (s, z), and (2.3) follows.
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We see that in (2.1) the noise covariance matrix GGτ is not of full rank. In
general, under such a condition the corresponding stochastic optimal control problem
does not admit classical solutions due to the degenerate nature of the arising HJB
equations. Here we analyze viscosity solutions.

Definition 2.3. v(t, z) ∈ C([0, T ]× R
2n) is called a viscosity subsolution to the

HJB equation

0 = −∂v

∂t
+ sup

u∈U

{
−∂τv

∂z
ψ

}
− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l,(2.4)

v|t=T = h(z), z ∈ R
2n,

if v|t=T ≤ h, and for any ϕ(t, z) ∈ C1,2([0, T ] × R
2n), whenever v − ϕ takes a local

maximum at (t, z) ∈ [0, T ) × R
2n, we have

−∂ϕ

∂t
+ sup

u∈U

{
−∂τϕ

∂z
ψ

}
− 1

2
tr

(
∂2ϕ

∂z2
GGτ

)
− l ≤ 0, z ∈ R

2n,(2.5)

at (t, z). Here v(t, z) ∈ C([0, T ] × R
2n) is called a viscosity supersolution to (2.4) if

v|t=T ≥ h, and in (2.5) we have an opposite inequality at (t, z), whenever v−ϕ takes
a local minimum at (t, z) ∈ [0, T ) × R

2n. Additionally, v(t, z) is called a viscosity
solution if it is both a viscosity subsolution and a viscosity supersolution.

Theorem 2.4. The value function v is a viscosity solution to the HJB equation

0 = −∂v

∂t
+ sup

u∈U

{
−∂τv

∂z
ψ

}
− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l,(2.6)

v(T, z) = 0.

Proof. The value function v is continuous (by Proposition 2.2) and satisfies the
boundary condition in (2.6). Now, for any ϕ(t, z) ∈ C1,2([0, T ]×R

2n), suppose v−ϕ
has a local maximum at (s, z0), s < T . We denote by z(1), z(2) the first n and last n,
respectively, components of z. In the following proof, we assume that ϕ(t, z) = 0 for all

z(1) such that |z(1)−z
(1)
0 | ≥ C for a constant C > 0; otherwise we can multiply ϕ(t, z)

by a C∞ function ζ(z(1)) with compact support and ζ(z(1)) = 1 for |z(1) − z
(1)
0 | ≤ C

2 .
We take a constant control u ∈ [−1, 1] on [s, T ] to generate zu with initial state
zs = z0 and write Δ(t, z) = v(t, z)−ϕ(t, z). Since (s, z0) is a local maximum point of
Δ(t, z), we can find ε > 0 such that Δ(s1, z) ≤ Δ(s, z0) for |s1 − s|+ |z− z0| ≤ ε. For
s1 ∈ (s, T ], zs = z0, write 1Aε = 1(|s1−s|+|zs1−z0|≥ε). Then we get the lower bound
estimate

E[Δ(s, z0) − Δ(s1, zs1)]

= E[Δ(s, z0) − Δ(s1, zs1)](1 − 1Aε) + E[Δ(s, z0) − Δ(s1, zs1)]1Aε

≥ E[Δ(s, z0) − Δ(s1, zs1)]1Aε
�
= S0,

and using basic estimates for the change of the value function with respect to different
initial states (see, e.g., [12, 3] for standard techniques), it follows that

|S0| = O
(
Ee2|z(1)

s1
|1Aε

)
= O

(
Ee2|z(1)

s1
|1

(|z(1)
s1

−z
(1)
0 |≥ε/2)

)
(2.7)

= O(|s− s1|2)(2.8)
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when s1 ↓ s. Here we obtain (2.7) by the fact that z
(2)
s1 → z

(2)
0 uniformly as s1 ↓ s,

which follows from the Lipschitz and boundedness (w.r.t. increment in x) conditions

for g(t, x, p, u), and obtain the bound (2.8) using basic moment estimates for |z(1)
s1 −

z
(1)
0 |2. It follows from (2.8) that

lim
s1↓s

1

s1 − s
E[Δ(s, z0) − Δ(s1, zs1)] ≥ 0.(2.9)

However, for s1 ∈ (s, T ] we also have

1

s1 − s
E[Δ(s, z0) − Δ(s1, zs1)]

≤ 1

s1 − s
E

[∫ s1

s

l(zt)dt− ϕ(s, z0) + ϕ(s1, zs1)

]
(2.10)

→
[
l +

∂ϕ

∂s
+

∂τϕ

∂z
ψ

∣∣∣∣
u

+
1

2
tr

(
∂2ϕ

∂z2
GGτ

)]∣∣∣∣
(s,z0)

∀u ∈ U

as s1 ↓ s, where we get the inequality by the principle of optimality, and obtain (2.10)
by using Ito’s formula to express ϕ(s1, zs1) near (s, z0) and then taking expectations.
In the above, since v satisfies the growth condition in Proposition 2.2, ϕ(t, z) = 0 for

|z(1) − z
(1)
0 | ≥ C, all the expectations are finite. Therefore, for z ∈ R

2n, by (2.9) and
(2.10),

∂ϕ

∂s
+ min

u∈U

{
∂τϕ

∂z
ψ

}
+

1

2
tr

(
∂2ϕ

∂z2
GGτ

)
+ l ≥ 0

at (s, z0). On the other hand, if v−ϕ has a local minimum at (s, z0), s < T , then for
any small ε > 0 we can choose sufficiently small s1 ∈ (s, T ] and find a control u ∈ U
generating zu such that

E{v(s, z0) − ϕ(s, z0) − v(s1, zs1) + ϕ(s1, zs1)}
(2.11)

≥ E

{∫ s1

s

l(zt)dt + ϕ(s1, zs1) − ϕ(s, z0)

}
− ε(s1 − s).

Similar to (2.8), we also have

E[Δ(s, z0) − Δ(s1, zs1)] ≤ O(|s− s1|2),

which, together with (2.11) and Ito’s formula, gives

∂ϕ

∂s
+ min

u∈U

{
∂τϕ

∂z
ψ

}
+

1

2
tr

(
∂2ϕ

∂z2
GGτ

)
+ l ≤ 0

at (s, z0), so that the value function v is a viscosity solution.
To analyze uniqueness of the viscosity solution, we introduce the function class G

such that each W ∈ G satisfies the following:
(i) W ∈ C([0, T ] × R

2n), and
(ii) for any W ∈ G, there exist C, k1, k2 > 0 such that |W (t, z)|≤C[

∑n
i=1 e

k1|zi| +∑2n
i=1 |zi|k2 ].

Notice that in condition (ii), the constants C, k1, k2 may take a different set of
values for different W ∈ G. By Proposition 2.2 and Theorem 2.4 it follows that the
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value function v is a viscosity solution to the HJB equation (2.6) in the class G. We
now state the uniqueness result for the viscosity solutions.

Theorem 2.5. Assuming that (H1)–(H2) hold, there exists a unique viscosity
solution to (2.6) in the class G.

Here we state a general maximum principle on an unbounded domain for the HJB
equation (2.6). By considering two possibly distinct viscosity solutions v1 and v2 and
setting, respectively, (v1, v2) = (v, v) and (v2, v1) = (v, v) in Theorem 2.6, we obtain
Theorem 2.5 as a corollary. The proof of the maximum principle is postponed to
section 4.

Theorem 2.6. Assuming that (H1)–(H2) hold, if v, v ∈ G are the viscosity
subsolution and supersolution to (2.6), respectively, and sup∂∗Q0

(v − v) < ∞, then

sup
Q0

(v − v) = sup
∂∗Q0

(v − v),(2.12)

where Q0 = [0, T ] × R
2n, ∂∗Q0 = {(T, z) : z ∈ R

2n}.

3. Semiconvex and semiconcave approximations on compact sets. To
facilitate our analysis, write the Hamiltonian

H̃(t, z, u, ξ, V ) = −ξτψ(t, z, u) − 1

2
tr{V G(t, z)Gτ (t, z)} − l(z),(3.1)

H(t, z, ξ, V ) = sup
u∈U

H̃(t, z, u, ξ, V ),

where ξ ∈ R
2n, V is a 2n×2n real symmetric matrix, and the other terms are defined

in section 2. Then the HJB equation (2.6) may be written as

0 = −vt + H(t, z, vz, vzz),(3.2)

v(T, z) = 0.(3.3)

Definition 3.1 (see [12]). A real value function ϕ(x) defined on a convex set
Q ⊂ R

m is said to be semiconvex on Q if there exists a constant C > 0 such that
ϕ(x) + C|x|2 is convex; ϕ(x) is semiconcave on Q if −ϕ(x) is semiconvex on Q.

Definition 3.2. A real value function ϕ(x) defined on a convex set Q ⊂ R
m is

said to be locally semiconvex on Q if for any y ∈ Q there exists a convex neighborhood
Ny (relative to Q) of y such that ϕ(x) is semiconvex on Ny.

Proposition 3.3. If ϕ(x) is locally semiconvex on a convex compact set Q, then
ϕ(x) is semiconvex on Q.

Proof. For any y ∈ Q, there exists a convex set Ny open relative to Q such
that y ∈ Ny and ϕ(x) is semiconvex on Ny. Thus there exists Cy > 0 such that
ϕ(x) + Cy|x|2 is convex on Ny. Since {Ny, y ∈ Q} is an open cover of Q, there
exists a finite subcover denoted by {Nyi , 1 ≤ i ≤ k}. Take C = max1≤i≤k Cyi , and

then obviously ϕ(x) + C|x|2 �
= ϕ̂(x) is convex on each Nyi , 1 ≤ i ≤ k. Now for any

x1, x2 ∈ Q, 0 ≤ λ ≤ 1, we prove that ϕ̂(λx1 + (1− λ)x2) ≤ λϕ̂(x1) + (1− λ)ϕ̂(x2). It
suffices to consider the case 0 < λ < 1. First, from the collection {Nyi , 1 ≤ i ≤ k} we

select open sets, without loss of generality, denoted as N �
= {Nyi , i = 1, . . . ,m ≤ k}
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such that L
�
= {x : x = αx1 + (1 − α)x2, 0 ≤ α ≤ 1} ⊂ ∪Nyi

∈NNyi
. For simplicity

we consider the case m = 2 and x1 ∈ Ny1
, x2 ∈ Ny2

. The general case may be
treated inductively. To avoid triviality, we assume that neither Ny1 nor Ny2 covers

L individually, and then we can find xa ∈ L, xa 
= xλ
�
= λx1 + (1 − λ)x2 such that

xa ∈ Ny1 ∩ Ny2 and xa = c1x1 + (1 − c1)x2, 0 < c1 < 1. Without loss of generality
we assume that xλ is between x1 and xa. Then we further choose xb ∈ Ny1 ∩ Ny2

such that xb = c2x1 + (1− c2)x2 and xb is between xa and x2. Now it is obvious that
0 < c2 < c1 < λ < 1. It is straightforward to verify that

xλ=
λ− c1
1 − c1

x1+
1 − λ

1 − c1
xa, xa=

c1 − c2
λ− c2

xλ+
λ− c1
λ− c2

xb, xb=
c2
c1

xa+
c1 − c2

c1
x2.

Hence we have

ϕ̂(xλ) ≤ λ− c1
1 − c1

ϕ̂(x1) +
1 − λ

1 − c1
ϕ̂(xa),

ϕ̂(xa) ≤
c1 − c2
λ− c2

ϕ̂(xλ) +
λ− c1
λ− c2

ϕ̂(xb),

ϕ̂(xb) ≤
c2
c1

ϕ̂(xa) +
c1 − c2

c1
ϕ̂(x2),

where we get the first two inequalities and the last one by the convexity of ϕ̂(x) on
Ny1

and Ny2 , respectively. By a simple transformation with the above inequalities to
eliminate ϕ̂(xa) and ϕ̂(xb), we get

ϕ̂(xλ) ≤ λϕ̂(x1) + (1 − λ)ϕ̂(x2).

By arbitrariness of x1, x2 in Q it follows that ϕ̂(x) is convex on Q. This completes
the proof.

We adopt the semiconvex/semiconcave approximation technique of [12, 2, 9,
10], but due to the highly nonlinear growth condition of the class G, we apply a
particular localized technique to construct envelope functions to generate semicon-
vex/semiconcave approximations on any bounded domain. For any W ∈ G, define the
upper/lower envelope functions with η ∈ (0, 1],

W η(t, z) = sup
(s,w)∈Bη(t,z)

{
W (s, w) − 1

2η2
(|t− s|2 + |z − w|2)

}
,(3.4)

Wη(t, z) = inf
(s,w)∈Bη(t,z)

{
W (s, w) +

1

2η2
(|t− s|2 + |z − w|2)

}
,(3.5)

where Bη(t, z) denotes the closed ball (relative to [0, T ] × R
2n) centering (t, z) with

radius η. As will be shown in the following lemma, our construction above will
generate semiconvex/semiconcave approximations to a given continuous function on
a compact set for small η.

Lemma 3.4. For any fixed W ∈ G and compact convex set Q ⊂ [0, T ]×R
2n, there

exists a positive constant ηQ ≤ 1 depending only on Q such that for all η ∈ (0, ηQ],
W η(t, z) is semiconvex on Q, and Wη(t, z) is semiconcave on Q.
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Proof. Since any fixed W ∈ G is uniformly continuous and bounded on any
compact set Q, there exists ηQ > 0 depending only on Q, so that for all positive
η ≤ ηQ and (t, z) ∈ Q,

W η(t, z) = sup
(s,w)∈Bη/2(t,z)

{
W (s, w) − 1

2η2
[|t− s|2 + |z − w|2]

}
.(3.6)

Indeed, we can find ηQ > 0 such that for all η ≤ ηQ, |W (s, w) − W (t, z)| ≤ 1
16 for

(s, w) ∈ Bη(t, z), where (t, z) ∈ Q. Then for any (s, w) satisfying η2

4 ≤ |s− t|2 + |w−
z|2 ≤ η2, we have

W (s, w) − 1

2η2
(|s− t|2 + |w − z|2) ≤ W (t, z) +

1

16
− 1

2η2

η2

4
< W (t, z),

and (3.6) follows. In the following we assume η ≤ ηQ. Next we show that for any

(t0, z0) ∈ Q, W η(t, z) is semiconvex on Bη/4(t0, z0) ∩ Q. It suffices to show that
W η(t, z) + 1

2η2 (t2 + |z|2) is convex on Bη/4(t0, z0) ∩Q. Denote

R(s, w, t, z) = W (s, w) − 1

2η2
(|t− s|2 + |z − w|2) +

1

2η2
(t2 + |z|2).

If (t1, z1), (t2, z2) ∈ Bη/4(t0, z0) ∩Q, we have (t2, z2) ∈ Bη/2(t1, z1). For any λ ∈ [0, 1],
we denote (tλ, zλ) = (λt1 + (1 − λ)t2, λz1 + (1 − λ)z2) ∈ Q. It is obvious that
Bη/2(tλ, zλ) ⊂ Bη(t1, z1) ∩Bη(t2, z2). Then it follows that

W η(tλ, zλ) +
1

2η2
[t2λ + |zλ|2]

= sup
(s,w)∈Bη(tλ,zλ)

R(s, w, tλ, zλ) = sup
(s,w)∈Bη/2(tλ,zλ)

R(s, w, tλ, zλ)

= sup
(s,w)∈Bη/2(tλ,zλ)

[λR(s, w, t1, z1) + (1 − λ)R(s, w, t2, z2)]

≤ sup
(s,w)∈Bη/2(tλ,zλ)

λR(s, w, t1, z1) + sup
(s,w)∈Bη/2(tλ,zλ)

(1 − λ)R(s, w, t2, z2)

≤ sup
(s,w)∈Bη(t1,z1)

λR(s, w, t1, z1) + sup
(s,w)∈Bη(t2,z2)

(1 − λ)R(s, w, t2, z2)

= λ

[
W η(t1, z1) +

1

2η2
(t21 + |z1|2)

]
+ (1 − λ)

[
W η(t2, z2) +

1

2η2
(t22 + |z2|2)

]
.

Thus W η(t, z) is semiconvex on Bη/4(t0, z0) ∩Q. Further, by Proposition 3.3, W η(t, z)
is semiconvex on Q. Similarly we can prove that Wη(t, z) is semiconcave on Q for
η ∈ (0, η̃Q], where η̃Q ≤ 1 depends only on Q. The lemma follows by taking ηQ =
min{ηQ, η̃Q}.

We use an example to illustrate the construction of the semiconvex approximation
to a given function.
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Fig. 3.1. Semiconvex approximation with η = 0.125. Top: the curves in a large range. Bottom:
the curves in the local region.

Example 1. Consider a continuous function W : R → R defined as follows:

W (x) =

{
(x− 1)3 + 1 for x ≤ 0,

−(x + 1)3 + 1 for x > 0.

We take 0 < η ≤ 0.125 and write

θ(x) = 1 − x +
1

6η2
−

√[
1 − x +

1

6η2

]2

− (1 − x)2, x ≤ 0.

It is evident that the upper envelope function W η(x) is even on R, and its value on
(−∞, 0] is determined by

W η(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W (x + η) − 1

2
for x ≤ 1 − η − 1√

3η
,

W (x + θ(x)) − θ2(x)

2η2
for 1 − η − 1√

3η
< x ≤ −3η2,

W (0) − x2

2η2
for − 3η2 < x ≤ 0,

(3.7)

where 0 ≤ θ(x) ≤ η ∧ |x| holds for 1 − η − 1√
3η

< x ≤ −3η2.

From Figure 3.1, it is seen that at x = 0 the first order derivative of W (x) has
a negative jump, which corresponds to a sharp turn at x = 0 on the function curve.
After the semiconvexifying procedure, the sharp turn at x = 0 vanishes, as shown by
the curve of W η(x).
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We give a lemma which is parallel to the one in [12]. But here we do not make
Lipschitz or Hölder-type continuity assumptions on W . For completeness we give the
details.

Lemma 3.5. For W ∈ G and η ∈ (0, 1], W η and Wη are equicontinuous (w.r.t. η)
on any compact set Q ⊂ [0, T ] × R

2n and

W η(t, z) ≤ C

[
n∑

i=1

ek1|zi| +

2n∑
i=1

|zi|k2

]
,(3.8)

W η(t, z) = W (t0, z0) −
1

2η2
(|t− t0|2 + |z − z0|2)(3.9)

for some (t0, z0) ∈ Bη(t, z),

1

2η2
(|t− t0|2 + |z − z0|2) → 0 uniformly on Q as η → 0, and(3.10)

0 ≤ W η(t, z) −W (t, z) → 0 uniformly on Q as η → 0,(3.11)

where C, k1, k2 > 0 are constants independent of η. The estimates (3.8)–(3.10) also
hold when W η is replaced by Wη, and

0 ≤ W (t, z) −Wη(t, z) → 0 uniformly on Q as η → 0.(3.12)

Proof. Inequality (3.8) follows from the definition of G, and (3.9) is obvious.
Moreover, by (3.9) we have

1

2η2
(|t− t0|2 + |z − z0|2) = W (t0, z0) −W η(t, z) ≤ W (t0, z0) −W (t, z).(3.13)

Since |t− t0|+ |z−z0| → 0 as η → 0, by (3.13) and the uniform continuity of W on Q,
(3.10) follows. The estimate (3.11) follows from (3.9) and (3.10). The equicontinuity
of W η (w.r.t. η) on Q can be established by (3.11) and the continuous dependence
of W η on (η, t, z) ∈ [ε, 1] × Q for any 0 < ε ≤ 1. The case of Wη can be treated
similarly.

We define

Hη(t, z, ξ, V ) = inf
(s,w)∈Bη(t,z)

sup
u∈U

H̃(s, w, u, ξ, V ),(3.14)

Hη(t, z, ξ, V ) = sup
(s,w)∈Bη(t,z)

sup
u∈U

H̃(s, w, u, ξ, V ).(3.15)

Then it can be shown that Hη and Hη converge to H(t, z, ξ, V ) uniformly on any
compact subset of [0, T ] × R

2n × R
2n × S2n as η → 0, where S2n denotes the set of

2n × 2n real symmetric matrices. The following lemma can be proved by a method
similar to that in [4, 9, 10]; the proof is omitted here. Notice that the viscosity
sub/supersolution properties hold on a domain smaller than [0, T ] × R

2n.
Lemma 3.6. If v (v, respectively) is a viscosity subsolution (supersolution, re-

spectively) to (3.2) on [0, T ] ×R
2n, then vη (vη, respectively) is a viscosity subsolution

(supersolution, respectively) to HJB equation A (B, respectively) on [0, T − η]× R
2n,

where the HJB equations A and B are given by

A :

{
−vt + Hη(t, z, vz, vzz) = 0,

v(T − η, z) = vη(T − η, z),
B :

{
−vt + Hη(t, z, vz, vzz) = 0,

v(T − η, z) = vη(T − η, z).

In the above, vη and vη are defined by (3.4)–(3.5).
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4. Proof of Theorem 2.6. In this section we give a proof of Theorem 2.6. We
note that certain technical but standard arguments are not included here for reasons
of economy of exposition; complete references to the detailed versions of these parts
of the proof are supplied at appropriate places in the text.

We follow the method in [12, 4], employing the particular structure of the system
dynamics, and will make necessary modifications. For the viscosity subsolution and
supersolution v, v ∈ G we prove that

sup
Q1

(v − v) = sup
∂∗Q0

(v − v)
�
= c0 for Q1 = [T1, T ] × R

2n,(4.1)

where T1 = T − 1
4Δ , Δ = 25n(Cg +Cσ) + 10Cf0 , Cg is a finite constant such that for

g given in (1.2), |gi(t, x, p, u)| ≤ Cg(1 +
∑n

k=1 |pk|) for t ∈ [0, T ], x, p ∈ R
n, u ∈ U ,

1 ≤ i ≤ n, and Cσ, Cf0 are given in assumptions (H1)–(H2) introduced in section 2.
The maximum principle (2.12) follows by repeating the above procedure backward
with time. Our proof by contradiction starts with the observation that if (4.1) is not
true, there exists (t̂, ẑ) ∈ (T1, T ) × R

2n such that

v(t̂, ẑ) − v(t̂, ẑ) = c+0 > c0.(4.2)

We break the proof into several steps: (1) we construct a comparison function Λ
depending on positive parameters α, β, ε, λ, and, based upon (4.2), Λ is used to induce
a certain interior maximum; (2) using the viscosity sub/supersolution conditions, we
get a set of inequalities at the interior maximum; and (3) we establish an inequality
relation between α and β by taking appropriate vanishing subsequences of ε, λ, η,
and this inequality relation is shown to lead to a contradiction. The weak coupling
condition (H2) for x is used to obtain estimates used in Step 3 below.

Step 1 (constructing a comparison function and the interior maximum). To avoid
introducing too many constants, we assume that v and v belong to the class G with
associated constants k1 = k2 = 4. The more general case can be treated in exactly
the same way. Now we define the comparison function

Λ(t, z, s, w) =
α(2μT − t− s)

2μT

{
n∑

i=1

[
e5
√

z2
i
+1 + e5

√
w2

i
+1

]
+

2n∑
i=1

(z6
i + w6

i )

}

− β(t + s) +
1

2ε
|t− s|2 +

1

2ε
|z − w|2 +

λ

t− T1
+

λ

s− T1
,

where α, β, ε, λ are all taken from (0, 1]; μ = 1 + 1
4TΔ ; z, w ∈ R

2n; and t, s ∈ (T1, T ].
We write Φ(t, z, s, w) = vη(t, z) − vη(s, w) − Λ(t, z, s, w), where vη and vη are also
in G by Lemma 3.5. Noticing that Φ → −∞ as t ∧ s → T1 or |z| + |w| → ∞,
there exists (t0, z0, s0, w0) such that Φ(t0, z0, s0, w0) = supQ1×Q1

Φ(t, z, s, w). By
Φ(t0, z0, s0, w0) ≥ Φ(T, 0, T, 0), one can find a constant Cα depending only on α such
that (see Remark 2)

|z0| + |w0| +
1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 ≤ Cα and t0, s0 ∈

[
T1 +

λ

Cα
, T

]
.(4.3)

Combining 2Φ(t0, z0, s0, w0) ≥ Φ(t0, z0, t0, z0)+Φ(s0, w0, s0, w0), (4.3), and Lemma 3.5,
we get for fixed α > 0 (see Remark 3)

1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 → 0 uniformly as ε → 0.(4.4)
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In this section, we take β ∈ (0,
c+0 −c0

4T ). We further show that there exists α0 > 0 such
that for α < α0 and for sufficiently small r0 (which may depend upon α) and η ≤ r0,
ε ≤ r0, λ ≤ r0, the maximum of Φ on Q1 is attained at an interior point (t0, z0, s0, w0)
of the set

Qα =

{
(t, z, s, w) : T1 +

λ

2Cα
≤ t, s ≤ T − η, and |z|, |w| ≤ 2Cα

}
,(4.5)

where Cα is determined in (4.3).
We begin by observing that Φ(t0, z0, s0, w0) ≥ Φ(t̂, ẑ, t̂, ẑ) yields

vη(t̂, ẑ) − vη(t̂, ẑ) ≤ vη(t0, z0) − vη(s0, w0) − Λ(t0, z0, s0, w0) + Λ(t̂, ẑ, t̂, ẑ)

≤ vη(t0, z0) − vη(s0, w0) + 2βT +
2λ

t̂− T1

(4.6)

+ 2α

[
n∑

i=1

e5
√

ẑ2
i
+1 +

2n∑
i=1

ẑ6
i

]
.

Let H
β stand for the assertion that there exists α0 such that when α ≤ α0 and

max{η, ε, λ} ≤ r0 for sufficiently small r0, (t0, z0, s0, w0) is an interior point of Qα

in (4.5).
If H

β is not true, then there exists an arbitrarily small α ∈ (0, 1] such that for this

fixed α we can select η(k), ε(k), λ(k) → 0 for which the resulting (t
(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) 
∈

Int(Qα). By (4.3) it necessarily follows that t
(k)
0 ∨ s

(k)
0 ≥ T −η(k) → T and (4.4) gives

|t(k)
0 − s

(k)
0 | + |s(k)

0 − w
(k)
0 | → 0. It is also clear that (t

(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) is contained

in a compact set determined by α. Then by selecting an appropriate subsequence of

(t
(k)
0 , z

(k)
0 , s

(k)
0 , w

(k)
0 ) and taking the limit in (4.6) along this subsequence, we get

v(t̂, ẑ) − v(t̂, ẑ) ≤ v(T, zα) − v(T, zα) +
c+0 − c0

2
+ 2α

[
n∑

i=1

e5
√

ẑ2
i
+1 +

2n∑
i=1

ẑ6
i

]
(4.7)

≤ c+0 + c0
2

+ 2α

[
n∑

i=1

e5
√

ẑ2
i
+1 +

2n∑
i=1

ẑ6
i

]
,

where zα denotes the common limit of the selected subsequences of z
(k)
0 and w

(k)
0 .

Sending α → 0, we get v(t̂, ẑ)− v(t̂, ẑ) < c+0 , which contradicts (4.2); hence H
β holds.

From the argument leading to (4.7) it is seen that α0 can be chosen independently
of β.

Step 2 (applying Ishii’s lemma). Hereafter, we assume that β <
c+0 −c0

4T , α < α0,
and max{η, ε, λ} ≤ r0 are always satisfied and thus H

β holds. We assume Φ attains a
strict maximum at (t0, z0, s0, w0); otherwise we replace Λ by Λ+ |t− t0|2 + |s− s0|2 +
|z − z0|4 + |w − w0|4. Following the derivations in [12, 9, 4] and using the interior
maximum obtained in Step 1, the semiconvexity of vη, and the semiconcavity of vη
for η ≤ ηQα by Lemma 3.4, and by Lemma 3.6, we obtain the so-called Ishii’s lemma;
i.e., there exist 2n× 2n symmetric matrices Mk, k = 1, 2, such that

−Λt(t0, z0, s0, w0) + Hη(t0, z0,Λz(t0, z0, s0, w0),M1) ≤ 0,(4.8)

Λs(t0, z0, s0, w0) + Hη(s0, w0,−Λw(t0, z0, s0, w0),M2) ≥ 0,(4.9) (
M1 0
0 −M2

)
≤

(
Λzz Λzw

Λτ
zw Λww

) ∣∣∣
(t0,z0,s0,w0)

.(4.10)
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We note that it is important to have t0∨s0 < T−η in order to establish (4.8)–(4.9) by
Lemma 3.6 and an approximation procedure (see, e.g., [4] for the case of a bounded
domain). Now (4.8) and (4.9) yield

−Λt(t0, z0, s0, w0) − Λs(t0, z0, s0, w0)
(4.11)

≤ Hη(s0, w0,−Λw(t0, z0, s0, w0),M2) −Hη(t0, z0,Λz(t0, z0, s0, w0),M1).

Step 3 (estimates for LHS and RHS of (4.11)). The final stage in our deduction
of a contradiction from (4.2) involves estimates of the LHS and RHS of (4.11). The
estimates for both sides of (4.11) are taken at (t0, z0, s0, w0), but for brevity we omit
the subscript 0 for each variable. We have

LHS of (4.11) =
α

μT

[
n∑

i=1

(
e5
√

z2
i
+1 + e5

√
w2

i
+1

)
+

n∑
i=1

(z6
i + w6

i )

]

+ 2β +
λ

(t− T1)2
+

λ

(s− T1)2
(4.12)

≥ α

μT

[
n∑

i=1

(
e5
√

z2
i
+1 + e5

√
w2

i
+1

)
+

n∑
i=1

(z6
i + w6

i )

]
+ 2β

and

RHS of (4.11) = sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u)] − sup

u∈U
[−Λτ

z (t, z, s, w)ψ(t̂, ẑ, u)]

+
1

2
tr[G(t̂, ẑ)Gτ (t̂, ẑ)M1] −

1

2
tr[G(ŝ, ŵ)Gτ (ŝ, ŵ)M2] + l(ẑ) − l(ŵ)

≤ sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u) + Λτ

z (t, z, s, w)ψ(t̂, ẑ, u)]

+
1

2
tr[G(t̂, ẑ)Gτ (t̂, ẑ)M1] −

1

2
tr[G(ŝ, ŵ)Gτ (ŝ, ŵ)M2] − l(ẑ) − l(ŵ),

which, together with (4.10) and (3.14)–(3.15), leads to

RHS of (4.11) ≤ sup
u∈U

[Λτ
w(t, z, s, w)ψ(ŝ, ŵ, u) + Λτ

z (t, z, s, w)ψ(t̂, ẑ, u)]
(�
= A1

)
+

1

2ε
tr{[G(t̂, ẑ) −G(ŝ, ŵ)]τ [G(t̂, ẑ) −G(ŝ, ŵ)]}

(�
= A2

)
+

α(2μT − t− s)

2μT
(4.13)

×
n∑

i,k=1

1

2

[
σ2
ik(t̂, ẑ)(Γ

′′(zi) + 30z4
i )

+σ2
ik(ŝ, ŵ)(Γ′′(wi) + 30w4

i )
] (�

= A3

)
+ [l(ẑ) − l(ŵ)]

(�
= A4

)
= A1 + A2 + A3 + A4,

where Γ(r)
�
= e5

√
r2+1, Γ′′ = d2Γ

dr2 and (t̂0, ẑ0) ∈ Bη(t0, z0), (ŝ0, ŵ0) ∈ Bη(s0, w0).

Notice that the set Sη,ε = {(t0, z0), (t̂0, ẑ0), (s0, w0), (ŝ0, ŵ0)} is contained in a compact
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set Q∗
α determined by α. For 0 < ε ≤ 1 appearing in Λ(t, z, s, w), there exists ηε > 0

such that, for all 0 < η ≤ ηε,

RHS of (4.11) ≤ A0
1 + A0

2 + A0
3 + A0

4 + ε,(4.14)

where, again without writing the subscript 0 for (t0, z0, s0, w0), we define

A0
1 = sup

u∈U
[Λτ

w(t, z, s, w)ψ(s, w, u) + Λτ
z (t, z, s, w)ψ(t, z, u)],

A0
2 =

1

2ε
tr{[G(t, z) −G(s, w)]τ [G(t, z) −G(s, w)]},

A0
3 =

α(2μT − t− s)

2μT

n∑
i,k=1

1

2
[σ2

ik(t, z)(Γ
′′(zi) + 30z4

i ) + σ2
ik(s, w)(Γ′′(wi) + 30w4

i )],

A0
4 = l(z) − l(w).

Since Sη,ε is contained in Q∗
α and the diameter of Sη,ε tends to 0 as η, ε → 0, by taking

an appropriate sequence (η(k), ε(k), λ(k)) → 0 satisfying η(k) ≤ ηε(k) , we get convergent

sequences (t
(k)
0 , z

(k)
0 ), (t

(k)
0 , ẑ

(k)
0 ), (s

(k)
0 , w

(k)
0 ), (s

(k)
0 , ŵ

(k)
0 ) → (t̃, z̃) as k → ∞. In the

following we use the same C to denote different constants which are independent of
α. Now we have the three relations

lim sup
k→∞

LHS of (4.11)(η(k), ε(k), λ(k)) ≥ 2α

μT

[
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6
]

+ 2β,(4.15)

lim
k→∞

(A0
2 + A0

4)
(
η(k), ε(k), λ(k)

)
= 0,(4.16)

lim sup
k→∞

A0
3

(
η(k), ε(k), λ(k)

)
≤ nαCσ(μT − t̃)

μT

n∑
i=1

(
25e5

√
z̃2
i
+1 + 30|z̃i|4

)
,(4.17)

where (4.15) follows from (4.12), and (4.16) follows from the continuity of l(z), the
Lipschitz continuity of G(t, z) by assumption (H1), and (4.4). We proceed to ana-
lyze A0

1:

A0
1 ≤ sup

u∈U

2n∑
i=n+1

[Λzi(t, z, s, w)ψi(t, z, u) + Λwi
(t, z, s, w)ψi(s, w, u)]

+

n∑
i=1

[Λzi(t, z, s, w)fi(t, z) + Λwi(t, z, s, w)fi(s, w)]
�
= A0

11 + A0
12.

Then by (H1), (4.4), and recalling |gi(t, x, p, u)| ≤ Cg(1 +
∑n

k=1 |pk|) for t ∈ [0, T ],
u ∈ U , we have

lim sup
k→∞

A0
11

(
η(k), ε(k), λ(k)

)
≤ α(μT − t̃)

μT

2n∑
i=n+1

12Cg

[
2n|z̃i|6 + |z̃i|5

]
.(4.18)

Now we employ ai(t) ≥ 0 for t ∈ [0, T ] in the weak coupling condition (H2), and the
Lipschitz property of fi(t, z) = ai(t)zi + f0

i (t, z) by (H1) to obtain
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A0
12 =

α(2μT − t− s)

2μT

×
n∑

i=1

{[
5zi√
z2
i + 1

e5
√

z2
i
+1 + 6z5

i +
zi − wi

ε

]
[−ai(t)zi + f0

i (t, z)]

+

[
5wi√
w2

i + 1
e5
√

w2
i
+1 + 6w5

i +
wi − zi

ε

]
[−ai(s)wi + f0

i (s, w)]

}
(4.19)

≤ α(2μT − t− s)

2μT

n∑
i=1

{[
5zi√
z2
i + 1

e5
√

z2
i
+1 + 6z5

i

]
f0
i (t, z)

+

[
5wi√
w2

i + 1
e5
√

w2
i
+1 + 6w5

i

]
f0
i (s, w)

}

+O

(
|t− s|2

ε
+

|z − w|2
ε

)
.

Hence, invoking (4.4), it follows that

lim sup
k→∞

A0
12(η

(k), ε(k), λ(k)) ≤ αCf0(μT − t̃)

μT

n∑
i=1

[
10e5

√
z̃2
i
+1 + 12|z̃i|5

]
,(4.20)

which, together with (4.16)–(4.18), gives

lim sup
k→∞

RHS of (4.11) (η(k), ε(k), λ(k))

≤ [10Cf0 + 25n(Cσ + Cg)]α(μT − t̃)

μT

[
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6 + C

]
(4.21)

≤ α

2μT

[
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6 + C

]
,

where C is independent of α. Hence it follows from (4.11), (4.15), and (4.21) that

2β ≤ − 3α

2μT

{
n∑

i=1

e5
√

z̃2
i
+1 +

2n∑
i=1

|z̃i|6
}

+ αC ≤ αC.(4.22)

We recall from Step 1 that β ≤ 1 can take a strictly positive value from the inter-

val (0,
c+0 −c0

4T ) and α ∈ (0, α0). Letting α → 0 in (4.22) yields β ≤ 0, which is a

contradiction to β ∈ (0,
c+0 −c0

4T ), and this completes the proof.

Remark 2. By Φ(t0, z0, s0, w0) ≥ Φ(T, 0, T, 0) and |v − v| = o([
∑n

i=1(e
5|zi| +

e5|wi|) +
∑2n

i=1(z
6
i + w6

i )]), there exist δα > 0, C > 0 such that

1

2ε
|t0 − s0|2 +

1

2ε
|z0 − w0|2 +

λ

t0 − T1
+

λ

s0 − T1

+ δα

[
n∑

i=1

(
e
5
√

1+z2
0,i + e

5
√

1+w2
0,i

)
+

2n∑
i=1

(
z6
0,i + w6

0,i

)]
≤ C.

Then (4.3) follows readily.
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Remark 3. By expanding 2Φ(t0, z0, s0, w0) ≥ Φ(t0, z0, t0, z0) + Φ(s0, w0, s0, w0)
using all the individual terms, it can be shown that 1

2ε |t0 − s0|2 + 1
2ε |z0 − w0|2 is

dominated by a continuous function F (t0, z0, s0, w0), which goes to zero as |t0 − s0|+
|z0 − w0| → 0, which in turn follows from (4.3) when ε → 0.

Remark 4. The proof of the theorem is based upon the methods in [12, 9, 10, 2].
Since here we deal with the function class G with a highly nonlinear growth condi-
tion on an unbounded domain, a localized semiconvex/semiconcave approximation
technique is devised. The particular structure of the system dynamics also plays an
important role in the proof of uniqueness, and in general it is more difficult to obtain
uniqueness results under more general dynamics and the above fast growth condition.
It is seen that the weak coupling feature of the dynamics of the state subprocess x
is crucial for the above proof, and furthermore, when there exists an ai < 0 (see
assumption (H2)), the estimate (4.19) would not be valid.

5. Control with state constraints. In this section we consider the case when
the state subprocess p is subject to constraints; i.e., the trajectory of each pi must
be maintained to be in a certain range. We term this situation as optimization under
hard constraints. In [11] the author considered a deterministic model and obtained
a constrained viscosity solution formulation for a first order HJB equation. Now due
to the exogenous subprocess x, we come up with a second order HJB equation, and
we will develop a similar formulation. Suppose that u ∈ U , where U is a compact
convex set in R

n, and that p satisfies pi ∈ [0, P i], where P i is the upper bound. For
simplicity we take U = [−1, 1]n and P i = ∞. For any fixed initial value p0 ≥ 0 (i.e.,
each (p0)i ≥ 0), define the admissible control set

Up0 = {u(·) | u is adapted to σ(zs, s ≤ t), u(t) ∈ U,

and PΩ(pi(t) ≥ 0 for all 0 ≤ t ≤ T ) = 1, 1 ≤ i ≤ n}.

In this section we consider the simple case of

g(t, x, p, u) = u.

Under the admissible control set Up0 , we will use the notation of section 2, for which
the interpretation should be clear, and in the following we also use Up0 with any initial
time s ≤ T . It is evident that Up0 is a convex set. Under the norm ‖ · ‖ on L defined
in section 2, Up0 is also closed. Indeed, if ‖u(k)−u‖ → 0 as k → ∞, where u(k) ∈ Up0 ,
one can show that u will also generate positive p trajectories with probability 1 with
initial value p0. Thus u ∈ Up0 . As in the state unconstrained case, one can prove
existence and uniqueness of the optimal control. Write

Q0
T = [0, T ) × R

n × (0,∞)n, QT = [0, T ) × R
n × [0,∞)n,

QT = [0, T ] × R
n × [0,∞)n.

We consider the HJB equation

0 = −∂v

∂t
+ sup

u∈U

{
−∂τv

∂z
ψ

}
− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l,(5.1)

v|t=T = 0,

where (t, z) = (t, x, p) ∈ QT .
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Definition 5.1. v(t, z) ∈ C(QT ) is called a constrained viscosity solution to
(5.1) if (i) v|t=T = 0 and, for any ϕ(t, z) ∈ C1,2(QT ), whenever v − ϕ takes a local
maximum at (t, z) ∈ Q0

T , we have

−∂ϕ

∂t
+ sup

u∈U

{
−∂τϕ

∂z
ψ

}
− 1

2
tr

(
∂2ϕ

∂z2
GGτ

)
− l ≤ 0, z ∈ R

2n,(5.2)

at (t, z), and (ii) for any ϕ(t, z) ∈ C1,2(QT ), whenever v − ϕ takes a local minimum
at (t, z) ∈ QT , in (5.2) we have an opposite inequality at (t, z). In short, we term the
constrained viscosity solution v(t, z) ∈ C(QT ) as a viscosity subsolution on Q0

T and a
viscosity supersolution on QT .

Remark 5. Conditions (i) and (ii) hold on Q0
T and QT , respectively. Here we give

a heuristic interpretation on how the state constraints are captured by condition (ii).
Suppose that v − ϕ attains a minimum at (t, x, p), where v is the value function and
satisfies (5.1) at (t, x, p) with classical derivatives, i.e.,

0 = −∂v

∂t
+

{
−∂τv

∂z
ψ

}∣∣∣∣
u=û

− 1

2
tr

(
∂2v

∂z2
GGτ

)
− l.(5.3)

In addition, we assume that û is admissible w.r.t. (x, p). Here t ∈ [0, T ) and p lies on
the boundary of [0,∞)n. By the necessary condition for a minimum, at (t, x, p), we
have

vt − ϕt ≥ 0, vxi − ϕxi = 0, vxixi
− ϕxixi

≥ 0, 1 ≤ i ≤ n,(5.4)

where the first inequality becomes equality when t ∈ (0, T ). Since p is on the boundary
of [0, T )n, we can find an index set I such that pi = 0 when i ∈ I, and pi > 0 when
i ∈ {1, . . . , n}\I. Again, by the minimum property at (t, x, p) we get

vpi − ϕpi ≥ 0 for i ∈ I, vpi − ϕpi = 0 for i ∈ {1, . . . , n}\I(5.5)

at (t, x, p). Since we assume that û is admissible w.r.t. (x, p), then we have ûi ≥ 0 for
i ∈ I, and therefore by (5.5), at (t, x, p)

(vp − ϕp)
τ û ≥ 0.(5.6)

Now by (5.4) and (5.6) we see that

−∂ϕ

∂t
+

{
−∂τϕ

∂z
ψ

}∣∣∣∣
u=û

− 1

2
tr

(
∂2ϕ

∂z2
GGτ

)
− l ≥ 0,

and then condition (ii) holds at (t, x, p).

As in section 2, we also define the set U = {u(·)|u is adapted to σ(zs, s ≤ t) and
u(t) ∈ U, t ≤ T}.

Lemma 5.2. For any initial pair (s0, x0, p0) with each (p0)i ≥ 0, and any u ∈ U ,
there exists ũ ∈ Up0 such that

PΩ

{∫ T

s0

|ũ− u|ds ≤ 4ε

}
= 1,(5.7)
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where with probability 1 and for all 1 ≤ i ≤ n, the constant ε > 0 satisfies

sup
t∈[s0,T ]

max{−pi(t, s0, p0, u), 0} ≤ ε,(5.8)

and p(t, s0, p0, u) denotes the value of p at t with initial condition (s0, p0) and con-
trol u.

Proof. We need only to modify each component ui of u in the following way.
Define τ0

i = s0, and for k ≥ 1,

τki = inf{t > τk−1
i , pi(t, s0, p0, ũ) = 0},(5.9)

τki = T if pi(t, τ
k−1
i + ε, pi(τ

k−1
i + ε), u) > 0 ∀t ≥ τk−1

i + ε,(5.10)

ũi(t) = 1 on [τk−1
i , τk−1

i + ε),(5.11)

ũi(t) = ui(t) on [τk−1
i + ε, τki ).(5.12)

Then it is obvious that ũ ∈ Up0 . Suppose that (5.7) is not true, and then there exist
i and a set A0 with PΩ(A0) > 0 such that on A0

∫ T

s0

|ũi − ui|ds > 4ε.(5.13)

For any fixed ω ∈ A0, if τk0
i is the last stopping time defined by (5.9) and (5.10), then

by (5.13) we can easily show that pi(τ
k0−1
i , s0, p0, u) < −2ε, which is a contradiction

to (5.8).
With Lemma 5.2, we can further show that the value function v(t, z) is contin-

uous on QT by a comparison method, as in the unconstrained case [3]. The details
are omitted here. The growth condition of Proposition 2.2 also holds in the state
constrained case.

Proposition 5.3. The value function v is a constrained viscosity solution to the
HJB equation (5.1).

Proof. We verify condition (i) first. For an initial condition pair (s, z) with z ∈ Q0
T

and any u ∈ U we construct control ũ = u on [s, s+ε] and ũ = 0 on (s+ε, T ]. We see
that when ε is sufficiently small, ũ is in the admissible control set w.r.t. (s, z) since
each pi ∈ [0,∞). All the remaining steps and the verification of condition (ii) can be
done as in Theorem 2.4.
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