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Mean Field Stochastic Games with Binary Action

Spaces and Monotone Costs

Minyi Huang∗ and Yan Ma†

Abstract

This paper considers mean field games in a multi-agent Markov decision process (MDP) frame-

work. Each player has a continuum state and binary action. By active control, a player can bring

its state to a resetting point. All players are coupled through their cost functions. The structural

property of the individual strategies is characterized in terms of threshold policies when the mean

field game admits a solution. We further introduce a stationary equation system of the mean field

game and analyze uniqueness of its solution under positive externalities.

Key words: dynamic programming, Markov decision process, mean field game, stationary

distribution, threshold policy

1 Introduction

Mean field game theory studies stochastic decision problems with a large number of noncooperative

players which are individually insignificant but collectively have a significant impact on a particular

player. It provides a powerful methodology for reducing complexity in the analysis and design of

strategies. With the aid of an infinite population model, one may apply consistent mean field approxi-

mations to construct a set of decentralized strategies for the original large but finite population model

and show its ε-Nash equilibrium property [18, 19, 22]. A closely related approach is independently de-

veloped in [27]. Another related solution notion in Markov decision models is the oblivious equilibrium

[41]. For nonlinear diffusion models [10, 22, 27], the analysis of mean field games depends on tools of

Hamilton-Jacobi-Bellman (HJB) equations, Fokker-Planck equations, and McKean-Vlasov equations.

For further literature in the stochastic analysis setting, see [11, 26]. To address mean field interactions

with an agent possessing strong influences, mixed player models are studied in [8, 16, 34, 35]. The

readers are referred to [8, 9, 14] for an overview on mean field game theory.

Mean field games have found applications in diverse areas such as power systems [25], large popu-

lation electric vehicle recharging control [31, 36], economics and finance [1, 12, 30], stochastic growth

theory [17], bio-inspired oscillator games [42].

This paper studies a class of mean field games in a multi-agent Markov decision process (MDP)

framework. Dynamic games within an MDP setting are a classic area pioneered by Shapley under the

name stochastic games [13, 37]. For MDP based mean field game modeling, see [1, 21, 41]. The players
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in our model have continuum state spaces and binary action spaces, and have coupling through their

cost functions. The state of each player is used to model its risk (or distress) level which has random

increase if no active control is taken. The one stage cost of a player depends on its own state, the

population average state and its control effort. Naturally, the cost of a player is an increasing function

of its own state. The motivation of this modeling framework comes from applications including

network security investment games, and flue vaccination games [6, 24, 28, 32]; when the cost function

is an increasing function of the population average state, it reflects positive externalities. Markov

decision processes with binary action spaces also arise in control of queues and machine replacement

problems [3, 7]. Our game model has connection with anonymous sequential games [23] which combine

stochastic game modeling with a continuum of players. However, there is a subtle difference regarding

treating individual behavior. In anonymous sequential games one determines the equilibrium as a

joint state-action distribution of the population and leaves the individual strategies unspecified [23,

Sec. 4], although there is an interpretation of randomized actions for players sharing a given state.

Our approach works in the other direction by explicitly specifying the best response of an individual

and using its closed-loop state distribution to determine the mean field. Our modeling starts with

a finite population, and avoids certain measurability difficulties in directly treating a continuum of

random processes [2].

A very interesting feature of our model is threshold policies for the solution of the mean field game.

We consider a finite time horizon game, and identify conditions for the existence of a solution to the

fixed point problem. The further analysis deals with the stationary equation of the game and addresses

uniqueness under positive externalities, which is done by studying ergodicity of the closed-loop state

process of an individual player. Proving uniqueness results in mean field games is a nontrivial task,

particularly when attempting to seek less restrictive conditions. This work is perhaps the first to

establish uniqueness by the route of exploiting externalities. For this paper, in order to maintain

a balance in analyzing the finite horizon problem and the stationary equation system, the existence

analysis of the latter is not included and will be reported in another work.

Although mean field games provide a powerful paradigm for substantially reducing complexity

in designing strategies, except for the linear-quadratic (LQ) cases [18, 29, 39, 40] allowing simple

computations, strategies in general nonlinear systems are often only implicitly determined, rarely

taking simple forms. Their numerical solutions lead to high computational load. One of the objectives

in this paper is to develop a modeling framework to obtain relatively simple solution structures.

This paper is an English version of [20]. All assumptions and results in Sections 2-6 and Appendices

A and B of both papers are the same, but Appendices C and D have been rewritten.

The organization of the paper is as follows. The Markov decision process framework is introduced

in Section 2. Section 3 solves the best response as a threshold policy. Section 4 shows an ǫ-Nash

equilibrium property. The existence of a solution to the mean field equation system is analyzed in

Section 5. Section 6 introduces the stationary equation system and analyzes uniqueness of its solution.

Section 7 concludes the paper.
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2 The Markov Decision Process Model

2.1 The system dynamics

The system consists of N players denoted by Ai, 1 ≤ i ≤ N . At time t ∈ Z+ = {0, 1, 2, . . .}, the state

of Ai is denoted by xit, and its action by ait.

For simplicity, we consider a population of homogeneous players. Each player has a state space

S = [0, 1]. A value of S may be interpreted as a risk (or “distress”) level. All players have the same

action space A = {a0, a1}. A player can either do nothing (action a0) or make an active effort (action

a1). For an interval I, let B(I) denote the Borel σ-algebra of I.

The state of each player evolves as a controlled Markov process which is affected only by its own

action. For t ≥ 0 and x ∈ S, the state has transition kernel specified by

P (xit+1 ∈ B|xit = x, ait = a0) = Q0(B|x), (1)

P (xit+1 = 0|xit = x, ait = a1) = 1, (2)

where Q0(·|x) is a stochastic kernel defined for B ∈ B(S) and Q0([0, x)|x) = 0. The structure of Q0

indicates that given xit = x, ait = a0, the state has a transition into [x, 1]. In other words, the state of

the player deteriorates if no active control is taken. We call ait = a1 and 0 ∈ S a resetting action and

a resetting point, respectively.

The vector process (x1t , . . . x
N
t ) constitutes a controlled Markov process in higher dimension with

its transition kernel determined as a product measure of the form

P (xit ∈ Bi, i = 1, . . . , N |xit = x[i], ait = a[i], i = 1, . . . , N) =

N
∏

i=1

P (xit ∈ Bi|x
i
t = x[i], ait = a[i]),

where Bi ∈ B(S), x[i] ∈ S and a[i] ∈ A. This product measure implies independent transitions of the

N controlled Markov processes.

2.2 The individual costs

Define the population average state x
(N)
t = 1

N

∑N
i=1 x

i
t. For Ai, the one stage cost is given by

c(xit, x
(N)
t , ait) = R(xit, x

(N)
t ) + γ1{ait=a1},

where γ > 0 and γ1{ait=a1} is the effort cost. The function R ≥ 0 is defined on S× S and models the

risk-related cost. For 0 < T < ∞ and discount factor ρ ∈ (0, 1), define the cost

Ji = E

T
∑

t=0

ρtc(xit, x
(N)
t , ait), 1 ≤ i ≤ N. (3)

The following assumptions are introduced.

(A1) {xi0, i ≥ 1} are i.i.d. random variables taking values in S and Exi0 = m0.

(A2) R(x, z) is a continuous function on S× S. For each fixed z, R(·, z) is strictly increasing.

(A3) There exists a random variable ξ taking values in S such that the measure Q0(·|x) is the

distribution of the random variable x+ (1− x)ξ. Furthermore, P (ξ = 1) < 1.

Denote the distribution function of ξ by Fξ. To avoid triviality, we assume P (ξ = 1) < 1 in (A3).
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We give some motivation about (A3). For S = [0, 1], 1 − x is the state margin from the maximal

state 1. Denote mi
t = 1−xit. Then given mi

t and ait = 0, the state margin decays tomi
t+1 = (1−ξit+1)m

i
t

where ξit+1 has the same distribution as ξ. In other words, the state margin decays exponentially if

no active control is applied.

Remark 1 In fact, (A3) implies the so-called stochastic monotonicity condition (see e.g. [3, 7]) for

Q0. We assume the specific form of Q0, aiming to obtain more refined properties for the resulting

threshold policies and sample path behavior of players.

Example 1 A lab consists of N networked computers Mi, 1 ≤ i ≤ N , each of which is assigned to

a primary user Ui, 1 ≤ i ≤ N , and is occasionally accessed by others for its specific resources. A

computer has an unfitness state xit ∈ [0, 1], which randomly degrades due to daily use and potential

exposure to malwares, etc. A user Ui can take a maintenance action a1 on Mi by installing or updating

security software, scanning and cleaning up disk, freeing up memory space, etc., to bring it to an ideal

condition xit = 0. The one stage cost of Ui is R(xit, x
(N)
t ) + γ1{ait=a1}

where the dependence on x
(N)
t is

due to machine sharing and potential malware spreading from other machines. This model is called a

labmate game.

3 The Mean Field Limit Model

3.1 The optimal control problem

Assume (A1)-(A3) for Section 3. A sequence (bs, . . . , bt), s ≤ t, is denoted as bs,t. Let x
i
t be given by

(1)-(2). Let x
(N)
t be approximated by a deterministic value zt. Define

J̄i(z0,T , a
i
0,T ) = E

T
∑

t=0

ρtc(xit, zt, a
i
t).

We call ait a pure Markov policy (or strategy) at t if ait(x) is a mapping from S to A. We say that

ait is a threshold policy with parameter r ∈ [0, 1] if ait(x) = a1 for x ≥ r and ait(x) = a0 for x < r; this

gives a feedback policy. The analysis below will identify properties of the optimal policy.

3.2 The dynamic programming equation

Denote ais,t = (ais, . . . , a
i
t) for s ≤ t. Fix the sequence z0,T , where each zt ∈ [0, 1]. For 0 ≤ s ≤ T and

x ∈ S, define

J̄i(s, x, z0,T , a
i
s,T ) = E

[

T
∑

t=s

ρt−sc(xit, zt, a
i
t)
∣

∣

∣
xis = x

]

.

Define the value function V (t, x) = infai
t,T

J̄i(t, x, z0,T , a
i
t,T ), where a

i
0,T is from the set of all Markov

policies. The dynamic programming equation takes the form







V (t, x) = minait

[

c(x, zt, a
i
t) + ρE[V (t+ 1, xit+1)|x

i
t = x]

]

,

V (T, x) = R(x, zT ), 0 ≤ t < T.
(4)
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Write (4) in the equivalent form






V (t, x) = min
[

ρ
∫ 1
0 V (t+ 1, y)Q0(dy|x) +R(x, zt), ρV (t+ 1, 0) +R(x, zt) + γ

]

,

V (T, x) = R(x, zT ), 0 ≤ t < T.
(5)

Denote

Gt(x) =

∫ 1

0
V (t, y)Q0(dy|x), 0 ≤ t ≤ T. (6)

Lemma 1 For each 0 ≤ t ≤ T , V (t, x) is continuous on S.

Proof. We prove by induction. V (T, x) is a continuous function of x ∈ S. Suppose that V (k, x) is

a continuous function of x for 0 < k ≤ T . By (A3),

Gk(x) =

∫ 1

0
V (k, x+ (1− x)y)dFξ(y) =

∫ 1

0
V (k, (1 − y)x+ y)dFξ(y), (7)

which combined with the induction hypothesis implies that ρGk(x) is continuous in x.

Note that R(x, zk−1) is continuous in x. On the other hand, if g1(x) and g2(x) are continuous

on [0, 1], min{g1(x), g2(x)} is a continuous function of x. It follows from (5) that V (k − 1, x) is a

continuous function of x.

By induction, we conclude that V (t, x) is continuous in x for all 0 ≤ t ≤ T . �

Lemma 2 For each 0 ≤ t ≤ T , V (t, x) is strictly increasing on S.

Proof. For t = T , V (T, x1) < V (T, x2) whenever x1 < x2. Suppose that for 0 < k ≤ T ,

V (k, x1) < V (k, x2), for x1 < x2. (8)

For 0 ≤ x1 < x2 ≤ 1,

R(x1, zk−1) < R(x2, zk−1).

By (7) and (8),

ρGk(x1) +R(x1, zk−1) < ρGk(x2) +R(x2, zk−1).

For α1 < α2 and β1 < β2, we have min{α1, β1} < min{α2, β2}. Taking

αi = ρGk(xi) +R(xi, zk−1), βi = ρV (k, 0) +R(xi, zk−1) + γ,

we obtain V (k− 1, x1) < V (k− 1, x2). By induction, V (t, x) is strictly increasing for all 0 ≤ t ≤ T . �

Lemma 3 For 0 ≤ t ≤ T , Gt(x) is continuous and strictly increasing in x.

Proof. The lemma follows from Lemmas 1 and 2, (7) and P (ξ = 1) < 1 in (A3). �

Lemma 4 For t ≤ T − 1, if

ρGt+1(0) < ρV (t+ 1, 0) + γ < ρGt+1(1), (9)

there exists a unique x∗ ∈ (0, 1) such that ρGt+1(x
∗) = ρV (t+ 1, 0) + γ.
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Proof. The lemma follows from Lemma 3 and the intermediate value theorem. �

Theorem 1 If t = T , define aiT = a0. For t ≤ T − 1, define the policy ait(x) by the following rule.

i) If ρGt+1(1) ≤ ρV (t+ 1, 0) + γ, take ait(x) = a0 for all x ∈ S.

ii) If ρGt+1(0) ≥ ρV (t+ 1, 0) + γ, take ait(x) = a1 for all x ∈ S.

iii) If (9) holds, take ait as a threshold policy with parameter x∗ given in Lemma 4.

Then ai0,T is an optimal policy.

Proof. It is easy to see that aiT = a0 is optimal. Consider t ≤ T − 1. By Lemma 3 and 4, we can

verify that the minimum in (5) is attained when ait is chosen according to i)-iii). �

4 Solution of the Mean Field Game

Assume (A1)-(A3). To obtain a solution of the mean field game, we introduce the equation system



























V (t, x) = min
[

ρ
∫ 1
0 V (t+ 1, y)Q0(dy|x) +R(x, zt), ρV (t+ 1, 0) +R(x, zt) + γ

]

,

0 ≤ t < T

V (T, x) = R(x, zT ),

zt = Exit, 0 ≤ t ≤ T.

(10)

By (A1), z0 = m0. We look for a solution (ẑ0,T , â
i
0T ) for (10) such that {xit, 0 ≤ t ≤ T} is generated

by {âit(x), 0 ≤ t ≤ T} satisfying the rule in Theorem 1 after setting z0,T = ẑ0,T . The last equation is

the standard consistency condition in mean field games.

Consider the game of N players specified by (1)-(3). Denote a−i
0,T = (a10,T , . . . , a

i−1
0,T , a

i+1
0,T , . . . , a

N
0,T ).

Write Ji = Ji(a
i
0,T , a

−i
0,T ).

For the performance estimates, we consider the perturbation of ait in a strategy space Ut consisting

of all pure Markov strategies depending on (x1t , . . . , x
N
t ).

Definition 1 A set of strategies {ai0,T , 1 ≤ i ≤ N} for the N players is called an ǫ-Nash equilibrium

with respect to the costs {Ji, 1 ≤ i ≤ N}, where ǫ ≥ 0, if for any 1 ≤ i ≤ N ,

Ji(a
i
0,T , a

−i
0,T ) ≤ Ji(b

i
0,T , a

−i
0,T ) + ǫ,

for any bi0,T ∈
∏T

t=0 Ut.

Theorem 2 Suppose that (10) has a solution (ẑ0,T , â
i
0,T ). Then (â10,T , . . . , â

N
0,T ) is an ǫ-Nash equilib-

rium, i.e.,

Ji(â
i
0,T , â

−i
0,T )− ǫ ≤ inf

ai
0,T

Ji(a
i
0,T , â

−i
0,T ) ≤ Ji(â

i
0,T , â

−i
0,T ), 1 ≤ i ≤ N,

where ai0,T ∈
∏T

t=0 Ut and ǫ → 0 as N → ∞.

Proof. For (ai0,T , â
−i
0,T ), denote the corresponding states by xit, and x̂

j
t , j 6= i. We have

lim
N→∞

max
0≤t≤T

|x
(N)
t − ẑt| = 0, a.s. (11)
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where x
(N)
t = 1

N
(
∑

j 6=i x̂
j
t + xit). Denote

ǫ1,N = sup
ai
0,T

|Ji(a
i
0,T , â

−i
0,T )− J̄i(ẑ0,T , a

i
0,T )|.

Then by (11), limN→∞ ǫ1,N = 0. Furthermore,

Ji(a
i
0,T , â

−i
0,T ) =J̄i(ẑ0,T , a

i
0,T ) + Ji(a

i
0,T , â

−i
0,T )− J̄i(ẑ0,T , a

i
0,T )

≥J̄i(ẑ0,T , a
i
0,T )− ǫ1,N ≥ J̄i(ẑ0,T , â

i
0,T )− ǫ1,N .

On the other hand, denoting ǫ2,N = |Ji(â
i
0,T , â

−i
0,T )− J̄i(ẑ0,T , â

i
0,T )|, we have limN→∞ ǫ2,N = 0. There-

fore,

Ji(a
i
0,T , â

−i
0,T ) ≥ Ji(â

i
0,T , â

−i
0,T )− (ǫ1,N + ǫ2,N ).

The theorem follows by taking ǫ = ǫ1,N + ǫ2,N . �

5 Existence Result

Denote Zm0

T = {z0,T |z0 = m0, zt ∈ [0, 1] for 1 ≤ t ≤ T}. We introduce the following assumptions.

(H1) ξ has a probability density function denoted by fξ.

(H2) Consider the optimal control problem with cost function J̄i(z0,T , a
i
0,T ) = E

∑T
t=0 ρ

tc(xit, zt, a
i
t).

For any z0,T ∈ Zm0

T , there exists c > 0 such that the optimal policy satisfies ait(x) = a0 for all x ∈ [0, c]

and 0 ≤ t ≤ T .

We call (H2) the uniformly positive threshold condition for the family of optimal control problems.

When the state of the player is small, the effort cost outweighs the extra benefit in further reducing

the risk by active control. This holds uniformly with respect to z0,T .

Define the class P0 of probability measures on S as follows. ν ∈ P0 if there exist a constant cν ≥ 0

and a measurable function g(x) ≥ 0 defined on [0, 1] such that

ν(B) =

∫

B

g(x)dx + cν1B(0),

where B ∈ B(S) and 1B is the indicator function of B. When restricted to (0, 1], ν is absolutely

continuous with respect to the Lebesgue measure µLeb.

Assume (A1)-(A3) and (H1)-H2) hold, and the distribution of xi0 is µ0 ∈ P0 for this section.

For given z0,T ∈ Zm0

T , let the optimally controlled state process be xit with distribution µt. Define

wt =
∫ 1
0 xµt(dx) and the mapping Φ from [0, 1]T to [0, 1]T :

(w1, . . . , wT ) = Φ(z1, . . . , zT ).

Lemma 5 Φ is continuous.

Proof. Let z0,T ∈ Zm0

T be fixed, and denote the optimal policy by ai0,T and the state process by

xit. Select z′0,T ∈ Zm0

T , and denote the corresponding optimal policy by bi0,T and the state process by

yit. Let the distribution of xit and yit be µt and µ′
t, respectively. Here µ0 = µ′

0 ∈ P0. By Lemmas A.1

and A.2, both µt and µ′
t are in P0 for t ≤ T . This ensures that µt has a small perturbation when the

7



associated positive threshold parameters have a small perturbation. By Lemmas A.3 and A.4, we can

first show that

lim
z′
0,T

→z0,T
sup

B∈B(S)
|µ1(B)− µ′

1(B)| = 0.

Repeating the estimate, we further obtain

lim
z′
0,T

→z0,T

sup
B∈B(S)

|µt(B)− µ′
t(B)| = 0, 0 ≤ t ≤ T.

Subsequently,

lim
z′
0,T

→z0,T

∫ 1

0
xµ′

t(dx) =

∫ 1

0
xµt(dx), 0 ≤ t ≤ T.

This proves continuity. �

Theorem 3 There exists a solution (âi0,T , ẑ0,T ) to (10).

Proof. The theorem follows from Lemma 5 and Brouwer’s fixed point theorem. �

6 The Stationary Equations

6.1 The stationary form

Assume (A1)-(A3). This section introduces a stationary version of (10). Take z ∈ S. The value

function is independent of time t and so denoted as V (x). The dynamic programming equation

becomes

V (x) = min
ai

[c(x, z, ai) + ρE[V (xit+1)|x
i
t = x]],

which gives

V (x) = min
[

ρ

∫ 1

0
V (y)Q0(dy|x) +R(x, z), ρV (0) +R(x, z) + γ

]

. (12)

We introduce another equation

z =

∫ 1

0
xπ(dx) (13)

for the probability measure π. We say (ẑ, âi, π̂) is a stationary solution to (12)-(13) if i) the feedback

policy âi is the best response with respect to ẑ in (12), ii) {xit, t ≥ 0} under the policy âi has the

stationary distribution π̂, and iii) (ẑ, π̂) satisfies (13).

The equation system (12)-(13) can be interpreted as follows. For the finite horizon problem,

suppose that T is increasing toward ∞. If the family of solutions (indexed by different values of T )

could settle down to a steady-state, we expect for very large t, V (t, x) and zt will be nearly independent

of time. This motivates us to introduce (12)-(13) as the stationary version of (10).
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6.2 Value function with general z

Consider a general z ∈ S not necessarily satisfying (12)-(13) simultaneously, and further determine

V (x) by (12). Denote G(x) =
∫ 1
0 V (y)Q0(dy|x).

Lemma 6 i) Equation (12) has a unique solution V ∈ C([0, 1],R).

ii) V is strictly increasing.

iii) The optimal policy can be determined as follows:

a) If ρG(1) ≤ ρV (0) + γ, ai(x) ≡ a0.

b) If ρG(0) ≥ ρV (0) + γ, ai(x) ≡ a1.

c) If ρG(0) < ρV (0) + γ < ρG(1), there exists a unique x∗ ∈ (0, 1) and ai is a threshold policy

with parameter x∗.

Proof. Part i) will be shown by a fixed point argument. Define the dynamic programming operator

(Lg)(x) = min
[

ρ

∫ 1

0
g(y)Q0(dy|x) +R(x, z), ρg(0) +R(x, z) + γ

]

,

where g ∈ C([0, 1],R). By the method in proving Lemma 1, it can be shown that Lg ∈ C([0, 1],R).

Now take g1, g2 ∈ C([0, 1],R). Denote x̂ = argmax |(Lg2)(x) − (Lg1)(x)|. Without loss of generality,

assume (Lg2)(x̂)− (Lg1)(x̂) ≥ 0.

Case 1) (Lg1)(x̂) = ρ
∫ 1
0 g1(y)Q0(dy|x̂) +R(x̂, z). We obtain

0 ≤ (Lg2)(x̂)− (Lg1)(x̂) ≤ ρ

∫ 1

0
(g2(y)− g1(y))Q0(dy|x̂)

≤ ρ‖g2 − g1‖.

Case 2) (Lg1)(x̂) = ρg1(0) +R(x̂, z) + γ. It follows that

0 ≤ (Lg2)(x̂)− (Lg1)(x̂) ≤ ρ|g2(0)− g1(0)|

≤ ρ‖g2 − g1‖.

Combining the two cases, we conclude that L is a contraction and has a unique fixed point V .

To show ii), Define gk+1 = Lgk for k ≥ 0, and g0 = 0. By the method in Lemma 2 and induction,

it can be shown that each gk is increasing on [0, 1]. Since limk→∞ ‖gk − V ‖ = 0, V is increasing.

Recalling (12), we claim that V is strictly increasing. This proves ii). By showing that G(x) is strictly

increasing, we further obtain iii). �

For given z, Lemma 6 shows the structure of the optimal policy. Now we specify an optimal

policy ai(x) in terms of a threshold parameter θ(z) by the following rule. i) If ρV (0) + γ ≤ ρG(0),

then ai(x) ≡ a1 with θ(z) = 0; ii) if ρG(0) < ρV (0) + γ < ρG(1), ai(x) is a threshold policy with

θ(z) ∈ (0, 1); iii) if ρV (0) + γ = ρG(1), then ai(x) has θ(z) = 1; iv) if ρV (0) + γ > ρG(1), ai(x) ≡ a0

for which we formally denote θ(z) = 1+.

Remark 2 For the case ρV (0)+γ = ρG(1), the above rule gives ai(1) = a1 and ai(x) = a0 for x < 1,

which is slightly different from Lemma 6 but still attains optimality.
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6.3 Stationary distribution for a given threshold policy

Suppose that ai is a threshold policy with parameter θ ∈ (0, 1). Denote the corresponding state

process by {xi,θt , t ≥ 0}, which is a Markov process. Let the probability measure P t(x, ·) on B(S) be

the distribution of xi,θt given x
i,θ
0 = x ∈ S.

We introduce a further condition on ξ.

(A4) ξ has a probability density function fξ(x) > 0 a.e. on S.

Theorem 4 For θ ∈ (0, 1), {xi,θt , t ≥ 0} is uniformly ergodic with stationary probability distribution

πθ, i.e.,

sup
x∈S

‖P t(x, ·) − πθ‖TV ≤ Krt (14)

for some constants K > 0 and r ∈ (0, 1), where ‖ · ‖TV is the total variation norm of signed measures.

Proof. See appendix B. �

6.4 Comparison theorems

Denote z(θ) =
∫ 1
0 xπθ(dx). We have the first comparison theorem on monotonicity.

Theorem 5 z(θ1) ≤ z(θ2) for 0 < θ1 < θ2 < 1.

Proof. See appendix D. �

In the further analysis, we consider the case where R takes the product form R(x, z) = R1(x)R2(z),

and where R still satisfies (A2) and R1 ≥ 0, R2 > 0. We further assume

(A5) R2 > 0 is strictly increasing on S.

This assumption indicates positive externalities since an individual benefits from the decrease of

the population average state. This condition has a crucial role in the uniqueness analysis.

Given the product form of R, now (12) takes the form

V (x) =min
[

ρ

∫ 1

0
V (y)Q0(dy|x) +R1(x)R2(z), ρV (0) +R1(x)R2(z) + γ

]

.

Consider 0 ≤ z2 < z1 ≤ 1 and

Vl(x) =min
[

ρ

∫ 1

0
Vl(y)Q0(dy|x) +R1(x)R2(zl), ρVl(0) +R1(x)R2(zl) + γ

]

. (15)

Denote the optimal policy as a threshold policy with parameter θl in [0, 1] or equal to 1+, where we

follow the rule in Section 6.2 to interpret θl = 1+. We state the second comparison theorem about the

threshold parameters under different mean field parameters zl.

Theorem 6 θ1 and θ2 in (15) are specified according to the following scenarios:

i) If θ1 = 0, then we have either θ2 ∈ [0, 1] or θ2 = 1+.

ii) If θ1 ∈ (0, 1), we have either a) θ2 ∈ (θ1, 1), or b) θ2 = 1, or c) θ2 = 1+.

iii) If θ1 = 1, θ2 = 1+.

iv) If θ1 = 1+, θ2 = 1+.

Proof. Since R2(z1) > R2(z2) > 0, we divide both sides of (15) by R2(zl) and define γl =
γ

R2(zl)
.

Then 0 < γ1 < γ2. The dynamic programming equation reduces to (C.2). Subsequently, the optimal

policy is determined according to Lemma C.4. �
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6.5 Uniqueness

We look for a solution (z, ai, π) from the class C of solutions where z ∈ S and ai is a threshold policy

with parameter θ ∈ [0, 1] or θ = 1+.

Theorem 7 Under (A1)-(A5) with R(x, z) = R1(x)R2(z), the equation system (12)-(13) has at most

one solution in C.

Proof. Assume two different solutions

(z1, a
i, π) 6= (z2, b

i, ν). (16)

If z1 = z2, (12) ensures ai = bi, and subsequently π = ν. This is a contradiction to two different

solutions. Now we can assume

0 ≤ z2 < z1 ≤ 1. (17)

We check different scenarios listed in Theorem 6. If θ1 ∈ (0, 1) so that θ2 ∈ (θ1, 1), Theorem 5 implies

z1 ≤ z2, which contradicts (17). For all remaining scenarios, it is easy to show z1 ≤ z2, which again

contradicts (17). Therefore, assumption (16) does not hold. Uniqueness follows. �

7 Conclusion

This paper considers mean field games in a framework of multi-agent Markov decision processes

(MDP). Each player has a monotone cost function and can apply resetting control to the state process.

Decentralized strategies are obtained as threshold policies. We further examine a system of stationary

equations of the mean field game and study uniqueness of the solution under positive externalities.

Appendix A: Technical Lemmas for Section 5

Let X be a random variable with distribution ν ∈ P0. Set xit = X. Define Y0 = xit+1 by applying

ait ≡ a0. Further define Y1 = xit+1 by applying the threshold policy ait with parameter r ∈ (0, 1). Then

P (Y0 ∈ B) =

∫ 1

0
Q0(B|x)ν(dx), B ∈ B(S). (A.1)

Lemma A.1 The distribution of Y0 is in P0.

Proof. We can directly show that the probability density function of Y0 is

g(y) =

∫

0≤x<y

1

1− x
fξ

(

y − x

1− x

)

ν(dx), y ∈ (0, 1).

In this case P (Y0 = 0) = 0. �

Lemma A.2 The distribution of Y1 is in P0.
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Proof. It is clear that P (Y1 = 0) = P (X ≥ r). The distribution of Y1 restricted on (0, 1] is absolutely

continuous with respect to µLeb. Denote

g(y) =

∫

0≤x<y∧r

1

1− x
fξ

(

y − x

1− x

)

ν(dx).

Then for B ∈ B(S),

P (Y1 ∈ B) =

∫

B

g(y)dy + P (X ≥ r)1B(0).

The lemma follows. �

Let z0,T ∈ Zm0

T be fixed, and denote the associated optimal policy by ai0,T . Select another sequence

z′0,T ∈ Zm0

T and let the optimal policy be denoted by bi0,T . Denote d(z′0,T , z0,T ) =
∑T

k=1 |z
′
k−zk|. Write

z′0,T → z0,T when d(z′0,T , z0,T ) → 0. Fix any t ≤ T − 1. Based on (H2), we consider two cases.

Case A) ait(x) = a0 for all x ∈ S.

Lemma A.3 For case A) and any ǫ > 0, there exists δ > 0 such that for all z′0,T satisfying d(z′0,T , z0,T ) ≤

δ, we have either

i) bit(x) = a0 for all x ∈ S, or

ii) there exists r′ ∈ (0, 1) such that bit is a threshold policy with parameter r′ and 0 < 1− r′ < ǫ.

Proof. When z′0,T ∈ Zm0

T is used in the optimal control problem in (H2), denote the value function

by V́ (t, x). Define Ǵt(x) in place of Gt(x). Then Ǵt(x) is continuous and strictly increasing for each

t. Since V depends on z0,T continuously,

lim
z′
0,T

→z0,T

sup
x∈S

|V́ (t, x)− V (t, x)| = 0. (A.2)

Consider any 0 < ǫ < 1. We only need to treat the following two scenarios.

1) ρGt+1(1) < ρV (t+ 1, 0) + γ.

By (A.2), there exists δ > 0 such that for all z′0,T satisfying d(z′0,T , z0,T ) ≤ δ, we have

ρǴt+1(1) < ρV́ (t+ 1, 0) + γ. (A.3)

Then bit(x) = a0 for all x ∈ S. So i) holds.

2) ρGt+1(1) = ρV (t+ 1, 0) + γ.

Then

ρGt+1(1− ǫ) < ρV (t+ 1, 0) + γ. (A.4)

By (A.4), there exists δ > 0 such that for all z′0,T satisfying d(z′0,T , z0,T ) ≤ δ, we have

ρǴt+1(1− ǫ) < ρV́ (t+ 1, 0) + γ. (A.5)

For such z′0,T , if ρǴt+1(1) ≤ ρV́ (t + 1, 0) + γ, we select bit(x) = a0 for all x ∈ S and then i) holds. If

z′0,T results in

ρǴt+1(1) > ρV́ (t+ 1, 0) + γ,

by (A.5), we can find r′ ∈ (1− ǫ, 1) such that

ρǴt+1(r
′) = ρV́ (t+ 1, 0) + γ,

which further determines bit as a threshold policy with parameter r′. �

Case B). There exists r ∈ (0, 1) such that ait is a threshold policy with parameter r.
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Lemma A.4 For case B), when d(z′0,T , z0,T ) is sufficiently small, bit is a threshold policy with param-

eter r′ ∈ (0, 1) and in addition, r′ → r as z′0,T → z0,T .

Proof. We have ρGt+1(r) = ρV (t + 1, 0) + γ. Fix a small ǫ > 0 such that (r − ǫ, r + ǫ) ⊂ (0, 1).

Then

ρGt+1(r − ǫ) < ρV (t+ 1, 0) + γ, ρGt+1(r + ǫ) > ρV (t+ 1, 0) + γ.

By (A.2), we may select δ > 0 such that for all z′0,T satisfying d(z′0,T , z0,T ) ≤ δ, we have

ρǴt+1(r − ǫ) < ρV́ (t+ 1, 0) + γ, ρǴt+1(r + ǫ) > ρV́ (t+ 1, 0) + γ.

Since Ǵt+1(x) is strictly increasing, there exists a unique r′ ∈ (r − ǫ, r + ǫ) such that

ρǴt+1(r
′) = ρV́ (t+ 1, 0) + γ,

where r′ depends on z′0,T . This in turn determines the threshold policy bit with parameter r′. Since ǫ

can be arbitrarily small, the last part of the lemma follows. �

Appendix B. Proof of Theorem 4

Consider 0 < θ < 1. The definitions of irreducibility, aperiodicity and a small set follow those in [33].

Let δx be the dirac measure at x ∈ R. Let ϕ := δ0. So δ0(B) = 1B(0) for B ∈ B(S).

Throughout this appendix, we write xt := x
i,θ
t in order to keep the notation light.

Lemma B.1 {xt, t ≥ 0} is ϕ-irreducible.

Proof. We can directly verify that

P (x2 = 0|x0 = x) > 0, x ∈ [0, θ),

P (x1 = 0|x0 = x) = 1, x ∈ [θ, 1].

The above probabilities of the process are calculated by setting the distribution for x0 as the dirac

measure δx. This implies that {xt, t ≥ 0} is ϕ-irreducible. �

Lemma B.2 {xt, t ≥ 0} is aperiodic.

Proof. Define Cs = {0}. Denote ǫ0 =
∫ 1
θ
fξ(y)dy > 0 and the measure ν = ǫ0δ0. Then

P (x2 = 0|x0 = 0) ≥ P (x2 = 0, x1 ≥ θ|x0 = 0)

= P (x1 ≥ θ|x0 = 0)

= ǫ0.

For any B ∈ B(S), then

P (x2 ∈ B|x0 = 0) ≥ ν(B). (B.1)
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Therefore, we can take Cs as a small set with ν(Cs) = ǫ0. Given x0 = 0 ∈ Cs, we further check

P (x3 = 0|x0 = 0) ≥ P (x3 = 0, x2 ≥ θ, x1 < θ|x0 = 0)

= P (x2 ≥ θ, x1 < θ|x0 = 0).

Let ξ, ξ1, ξ2 be i.i.d. random variables. Then

P (x2 ≥ θ, x1 < θ|x0 = 0) = P (ξ1 + (1− ξ1)ξ2 ≥ θ, ξ1 < θ)

≥ P (ξ2 ≥ θ, ξ1 < θ).

Hence

P (x3 = 0|x0 = 0) ≥

∫ θ

0
fξ(y)dy

∫ 1

θ

fξ(y)dy.

Denote ǫ1 =
∫ θ

0 fξ(y)dy. Then for any B ∈ B(S),

P (x3 ∈ B|x0 = 0) ≥ ǫ1ν(B). (B.2)

Since time indices 2 and 3 in (B.1) and (B.2) have the greatest common divisor equal to 1, {xt, t ≥ 0}

is aperiodic [33, pp. 112-114]. �

The Markov process {xt, t ≥ 0} is said to satisfy Doeblin’s condition if there exist a probability

measure φ on B(S) and ǫ < 1, η > 0, m ≥ 0, such that φ(B) > ǫ implies

inf
x∈S

P (xm ∈ B|x0 = x) ≥ η.

Lemma B.3 Doeblin’s condition holds for {xt, t ≥ 0}.

Proof. We take φ = δ0, and in this case φ(B) > 0 implies 0 ∈ B. It suffices to show

inf
x∈S

P (x4 = 0|x0 = x) ≥ η.

For x ∈ [θ, 1],

P (x4 = 0|x0 = x) ≥ P (x4 = 0, x3 ≥ θ, x2 < θ, x1 = 0|x0 = x)

= P (x3 = 0, x2 ≥ θ, x1 < θ|x0 = 0)

= P (x2 ≥ θ, x1 < θ|x0 = 0)

≥ ǫ0ǫ1. (B.3)

Let ξ, ξk, k = 1, 2, 3, be i.i.d. For x ∈ [0, θ),

P (x4 = 0|x0 = x) ≥ P (x4 = 0, x3 ≥ θ, x2 = 0, x1 ≥ θ|x0 = x)

= P (x3 ≥ θ, x2 = 0, x1 ≥ θ|x0 = x)

= P (ξ3 ≥ θ)P (x2 = 0, x1 ≥ θ|x0 = x)

= P (ξ3 ≥ θ)P (x+ (1− x)ξ1 ≥ θ)

≥ P (ξ3 ≥ θ)P (ξ1 ≥ θ) = ǫ20. (B.4)

By (B.3) and (B.4), Doeblin’s condition holds with ǫ = 1
2 , m = 4, η = ǫ20ǫ1 > 0. �

Proof of Theorem 4. Since {xt, t ≥ 0} is aperiodic and satisfies Doeblin’s condition, by [33, pp.

394, Theorem 16.0.2], (14) holds. �
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Appendix C: An Auxiliary MDP

Assume (A1)-(A4). This appendix introduces an auxiliary optimal control problem to show the effect

of the effort cost on the threshold parameter of the optimal policy. The state and control processes

{(xit, a
i
t), t ≥ 0} are specified by (1)-(2). The cost has the form

Jr
i = E

∞
∑

t=0

ρt(R1(x
i
t) + r1{ait=a1}

), (C.1)

where R1 is continuous and strictly increasing on [0, 1] and r ∈ (0,∞). Let r take two different values

0 < γ1 < γ2 and write the corresponding dynamic programming equation

vl(x) = min

{

ρ

∫ 1

0
vl(y)Q0(dy|x) +R1(x), ρvl(0) +R1(x) + γl

}

, l = 1, 2, x ∈ S. (C.2)

By the method in proving Lemma 6, it can be shown that there exists a unique solution vl ∈

C([0, 1],R) and that the optimal policy ai,l(x) is a threshold policy. If ρ
∫ 1
0 vl(y)Q0(dy|1) < ρvl(0)+γl,

ai,l(x) ≡ a0, and we follow the notation in Section 6.2 to formally denote it as a threshold policy with

parameter θl = 1+. Otherwise, ai,l(x) is a threshold policy with parameter θl ∈ [0, 1], i.e., ai,l(x) = a1

if x ≥ θl, and ai,l(x) = a0 if x < θl.

Lemma C.1 If θ1 ∈ (0, 1), θ2 6= θ1.

Proof. We prove by contradiction. Suppose for some θ ∈ (0, 1),

θ1 = θ2 = θ. (C.3)

Under assumption (C.3), the resulting optimal policy leads to the representation (see e.g. [15, pp.

22])

vl(x) = E

∞
∑

t=0

ρt
[

R1(x
i
t) + γl1{ait=a1}

]

, l = 1, 2,

where {xit, t ≥ 0} is generated by the threshold policy ait(x
i
t) with parameter θ and xi0 = x. Denote

δ21 = γ2 − γ1.

For any fixed x ≥ θ and xi0 = x, denote the resulting optimal state and control processes by

{(x̂it, â
i
t), t ≥ 0}. Then âi0 = a1 w.p.1., and

v2(x)− v1(x) = δ21 + δ21E

∞
∑

t=1

ρt1{âit=a1}, x ≥ θ.

Next consider xi0 = 0 and denote the optimal state and control processes by {(x̌it, ǎ
i
t), t ≥ 0}. Then

v2(0) − v1(0) = δ21E

∞
∑

t=0

ρt1{ǎit=a1} =: ∆.

It is clear that x̂i1 = 0 w.p.1. By the optimality principle, {(x̂it, â
i
t), t ≥ 1} may be interpreted as the

optimal state and control processes of the MDP with initial state 0 at t = 1. Hence the two processes
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{(x̂it, â
i
t), t ≥ 1} and {(x̌it, ǎ

i
t), t ≥ 0}, where x̌i0 = 0, have the same finite dimensional distributions. In

particular, âit+1 and ǎit have the same distribution for t ≥ 0. Therefore,

E

∞
∑

t=1

ρt−11{âit=a1}
= E

∞
∑

t=0

ρt1{ǎit=a1}
.

It follows that

v2(x)− v1(x) = δ21 + ρ∆, ∀x ≥ θ. (C.4)

Combining (C.2) and (C.3) gives

ρ

∫ 1

0
vl(y)Q0(dy|θ) = ρvl(0) + γl, l = 1, 2,

which implies

ρ

∫ 1

0
[v2(x)− v1(x)]Q0(dx|θ) = δ21 + ρ∆. (C.5)

By Q0([0, θ)|θ) = 0 and (C.4), (C.5) further yields

ρ(δ21 + ρ∆) = δ21 + ρ∆,

which is impossible since 0 < ρ < 1 and δ21 + ρ∆ > 0. Therefore, (C.3) does not hold. This completes

the proof. �

For the MDP with cost (C.1), we continue to analyze the dynamic programming equation

vr(x) = min
[

ρ

∫ 1

0
vr(y)Q0(dy|x) +R1(x), ρvr(0) +R1(x) + r

]

. (C.6)

For each fixed r ∈ (0,∞), we obtain the optimal policy as a threshold policy with parameter θ(r). By

evaluating the cost (C.1) associated with the two policies ait(x
i
t) ≡ a0 and ait(x

i
t) ≡ a1, respectively,

we have the prior estimate

vr(x) ≤ min

{

R1(1)

1− ρ
, R1(x) +

r + ρR1(0)

1− ρ

}

. (C.7)

On the other hand, let {xit, t ≥ 0} with xi0 = x be generated by any fixed Markov policy. Then

E

∞
∑

t=0

ρt(R1(x
i
t) + r1{ait=a1}

) ≥ R1(x) +
∞
∑

t=1

ρtR1(0),

which implies

vr(x) ≥ R1(x) +
ρR1(0)

1− ρ
. (C.8)

If r > ρR1(1)
1−ρ

, it follows from (C.7) that

ρ

∫ 1

0
vr(y)Q0(dy|x) < ρvr(0) + r, ∀x, (C.9)

i.e., θ(r) = 1+.
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Lemma C.2 There exists δ > 0 such that for all 0 < r < δ,

ρ

∫ 1

0
vr(y)Q0(dy|x) > ρvr(0) + r, ∀x, (C.10)

and so θ(r) = 0.

Proof. By (C.8),

ρ

∫ 1

0
vr(y)Q0(dy|x) ≥ ρ

∫ 1

0
R1(y)Q0(dy|x) +

ρ2R1(0)

1− ρ

≥ ρ

∫ 1

0
R1(y)Q0(dy|0) +

ρ2R1(0)

1− ρ
,

and (C.7) gives

ρvr(0) + r ≤
ρR1(0)

1− ρ
+

r

1− ρ
.

Since R1(x) is strictly increasing,

CR1
:=

∫ 1

0
R1(y)Q0(dy|0) −R1(0) > 0.

and

ρ

∫ 1

0
vr(y)Q0(dy|x) − (ρvr(0) + r) ≥ ρCR1

−
r

1− ρ
.

It suffices to take δ = ρ(1− ρ)CR1
. �

Define the nonempty sets

Ra0 = {r > 0|(C.9) hods}, Ra1 = {r > 0|(C.10) holds}.

Remark C.1 We have (ρR1(1)
1−ρ

,∞) ⊂ Ra0 and (0, δ) ⊂ Ra1 .

Lemma C.3 Let (r, vr) be the parameter and the associated solution in (C.6).

i) If r > 0 satisfies

ρ

∫ 1

0
vr(y)Q0(dy|x) ≤ ρvr(0) + r, ∀x, (C.11)

then any r′ > r is in Ra0 .

ii) If r > 0 satisfies

ρ

∫ 1

0
vr(y)Q0(dy|x) ≥ ρvr(0) + r, ∀x, (C.12)

then any r′ ∈ (0, r) is in Ra1 .

Proof. i) For r′ > r, vr′ is uniquely solved from (C.6) with r′ in place of r. We can use (C.11) to

verify

vr(x) = min

[

ρ

∫ 1

0
vr(y)Q0(dy|x) +R1(x), ρvr(0) +R1(x) + r′

]

.
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Hence vr′ = vr for all x ∈ [0, 1]. It follows that ρ
∫ 1
0 vr′(y)Q0(dy|x) < ρvr′(0) + r′ for all x. Hence

r′ ∈ Ra0 .

ii) By (C.6) and (C.12),

vr(0) =
R1(0) + r

1− ρ
,

and subsequently,

vr(x) = ρvr(0) +R1(x) + r

=
ρR1(0) + r

1− ρ
+R1(x).

By substituting vr(0) and vr(x) into (C.12), we obtain

ρR1(0) + r ≤ ρ

∫ 1

0
R1(y)Q0(dy|x), ∀x. (C.13)

Now for 0 < r′ < r, we construct vr′(x), as a candidate solution to (C.6) with r replaced by r′, to

satisfy

vr′(0) = ρvr′(0) +R1(0) + r′, vr′(x) = ρvr′(0) +R1(x) + r′, (C.14)

which gives

vr′(x) =
ρR1(0) + r′

1− ρ
+R1(x). (C.15)

We show that vr′(x) in (C.15) satisfies

ρvr′(0) + r′ < ρ

∫ 1

0
vr′(y)Q0(dy|x), ∀x, (C.16)

which is equivalent to

ρR1(0) + r′ < ρ

∫ 1

0
R1(y)Q0(dy|x), ∀x,

which in turn follows from (C.13). By (C.14) and (C.16), vr′ indeed satisfies (C.6) with r replaced by

r′. So r′ ∈ Ra1 . �

Further define

r = supRa1 , r = infRa0 .

Lemma C.4 i) r satisfies

ρ

∫ 1

0
vr(y)Q0(dy|0) = ρvr(0) + r,

and θ(r) = 0.

ii) r satisfies

ρ

∫ 1

0
vr(y)Q0(dy|1) = ρvr(1) = ρvr(0) + r.

and θ(r) = 1.

iii) We have 0 < r < r < ∞.

iv) θ(r) is continuous and strictly increasing on [r, r].
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Proof. i)-ii) By Lemmas C.2 and C.3, we have 0 < r ≤ ∞ and 0 ≤ r < ∞. Assume r = ∞; then

Ra1 = (0,∞) giving Ra0 = ∅, a contradiction. So 0 < r < ∞. For δ > 0 in Lemma C.2, we have

(0, δ) ⊂ Ra1 . Therefore, 0 < r̄ < ∞. Note that vr depends on the parameter r continuously, i.e.,

lim|r′−r|→0 supx |vr′(x)− vr(x)| = 0. Hence

ρ

∫ 1

0
vr(y)Q0(dy|0) ≥ ρvr(0) + r.

Now assume

ρ

∫ 1

0
vr(y)Q0(dy|0) > ρvr(0) + r. (C.17)

Then there exists a sufficiently small ǫ > 0 such that (C.17) still holds when (r + ǫ, vr+ǫ) replaces

(r, vr); since g(x) =
∫ 1
0 vr+ǫ(y)Q0(dy|x) is increasing in x, then r + ǫ ∈ Ra1 , which is impossible.

Hence (C.17) does not hold, and this proves i). ii) can be shown in a similar manner.

To show iii), assume

0 < r < r < ∞. (C.18)

Then, recalling Remark C.1, there exist r′ ∈ Ra0 and r′′ ∈ Ra1 such that

0 < r < r′ < r′′ < r < ∞.

By Lemma C.3-i), r′ < r′′ ∈ Ra0 , and then r′′ ∈ Ra0 ∩Ra1 = ∅, which is impossible. Therefore, (C.18)

doe not hold and we conclude 0 < r ≤ r < ∞. We further assume r = r. Then i)-ii) would imply
∫ 1
0 vr(y)Q0(dy|0) = vr(1), which is impossible since vr is strictly increasing on [0, 1] and (A3) holds.

This proves iii).

iv) By the definition of r and r, it can be shown using (C.6) that θ(r) ∈ (0, 1) for r ∈ (r, r). By

the continuous dependence of the function vr(·) on r and the method of proving Lemma A.4, we can

show the continuity of θ(r) on (0, 1), and further show limr→r+ θ(r) = 0 and limr→r− θ(r) = 1. So θ(r)

is continuous on [r, r]. If θ(r) were not strictly increasing on [r, r], there would exist r < r1 < r2 < r

such that

θ(r1) ≥ θ(r2). (C.19)

If θ(r1) > θ(r2) in (C.19), by the continuity of θ(r), θ(r) = 0, θ(r) = 1, and the intermediate value

theorem we may find r′ ∈ (r, r1) such that θ(r′1) = θ(r2). Next, we replace r1 by r′1. Thus if θ(r) is

not strictly increasing, we may find r1 < r2 from (r, r) such that θ(r1) = θ(r2) ∈ (0, 1), which is a

contradiction to Lemma C.1. This proves iv). �

Remark C.2 By Lemmas C.3 and C.4, Ra1 = (0, r) and Ra0 = (r,∞).

Remark C.3 If (A4) is replaced by P (ξ ∈ (0, 1)) > 0 without assuming a probability density function

fξ, we still have CR1
> 0 in the proof of Lemma C.2 and all results in this appendix hold.
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Appendix D: Proof of Theorem 5

Let {xi,θt , t ≥ 0} be the Markov chain generated by the threshold policy with parameter 0 < θ < 1,

where x
i,θ
0 is given. Define m

i,θ
t = 1− x

i,θ
t . By Theorem 4, {xi,θt , t ≥ 0} and {mi,θ

t , t ≥ 0} are ergodic.

To facilitate further computation, we define an auxiliary Markov chain {Yt, t ≥ 0}. Let ξ be

specified in (A3) and define ξ̃ = 1 − ξ. Let {ξ̃, ξ̃t, t ≥ 1} be i.i.d. random variables. For λ ∈ (0, 1),

define {Yt, t ≥ 0} as follows:

Y0 = 1, Yt = ξ̃tYt−1 for 1 ≤ t ≤ τ, (D.1)

where

τ = inf{t|Yt ≤ λ}.

By (A4), P (τ < ∞) = 1, and moreover, Eτ < ∞. Set Yτ+1 = 1 and the process {Yt, t ≥ 0} further

evolves from state 1 at time τ + 1 as a Markov chain with a stationary transition probability kernel.

Denote St =
∑t

i=0 Yi for t ≥ 0.

Lemma D.1 We have

lim
k→∞

1

k

k−1
∑

t=0

Yt =
ESτ

1 + Eτ
w.p.1. (D.2)

Proof. Take λ = 1−θ. Since {Yt, t ≥ 0} has the same transition probability kernel as {mi,θ
t , t ≥ 0},

it is ergodic, and therefore the left hand side of (D.2) has a constant limit w.p.1. Define T0 = 0 and

Tn as the time for {Yt, t ≥ 0} to return to state 1 for the nth time. Define Bn =
∑Tn−1

t=Tn−1
Yt for

n ≥ 1. We observe that {Yt, t ≥ 0} is a regenerative process (see e.g. [4, 38] and [5, Theorem 4]) with

regeneration times {Tn, n ≥ 1} and that {Bn, n ≥ 1} is a sequence of i.i.d. random variables. Note

that B1 = Sτ is the sum of τ +1 terms. By the strong law of large numbers for regenerative processes

[4, pp. 177], the lemma follows. �

Define another Markov chain {Y ′
t , t ≥ 0} after replacing λ in (D.1) by λ′ ∈ (0, λ), and τ by

τ ′ = inf{t|Y ′
t ≤ λ′}. The initial state is Y ′

0 = 1. Let S′
τ ′ =

∑τ ′

t=0 Y
′
t .

Lemma D.2 We have

ESτ

1 + Eτ
≥

ES′
τ ′

1 + Eτ ′
. (D.3)

Proof. Denote ζk =
∏k

t=1 ξ̃t for k ≥ 1. If k ≥ 2, {τ ≥ k} = {ζk−1 > λ}. For the given λ, we have

Eτ =

∞
∑

k=1

kP (τ = k) =

∞
∑

k=1

P (τ ≥ k) = 1 +

∞
∑

k=1

P (ζk > λ). (D.4)

Denote α = Eξ̃. Then α ∈ (0, 1) by (A4). We obtain

ESτ = E

∞
∑

k=1

Sk1{τ=k}

= EY0 + EY1 + E

∞
∑

k=2

Yk1{τ≥k}.
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By the independence of ξ̃k and ζk−11{ζk−1>λ} for k ≥ 2, it follows that

E(Yk1{τ≥k}) = E(ξ̃kζk−11{ζk−1>λ}) = αE(ζk−11{ζk−1>λ}).

This gives

ESτ = 1 + α+ α

∞
∑

k=1

E(ζk1{ζk>λ}).

For k ≥ 1, denote

pk = P (ζk > λ), rk = E(ζk1{ζk>λ}), δk = P (λ′ < ζk ≤ λ), ∆k = E(ζk1{λ′<ζk≤λ}).

We have

ESτ

1 + Eτ
=

1 + α+ α
∑∞

k=1 rk

2 +
∑∞

k=1 pk

and
ES′

τ ′

1 + Eτ ′
=

1 + α+ α
∑∞

k=1(rk +∆k)

2 +
∑∞

k=1(pk + δk)
.

The inequality (D.3) is equivalent to

α

(

∞
∑

k=1

∆k

)(

2 +

∞
∑

k=1

pk

)

≤

(

1 + α+ α

∞
∑

k=1

rk

)(

∞
∑

k=1

δk

)

. (D.5)

Clearly, ∆k ≤ λδk for k ≥ 1. To prove (D.5), it suffices to show

αλ

(

2 +
∞
∑

k=1

pk

)

≤ 1 + α+ α

∞
∑

k=1

rk.

Since rk ≥ λpk for k ≥ 1, we only need to show

2αλ ≤ 1 + α,

which follows from 0 < α < 1, 0 < λ < 1. �

Suppose 0 < θ < θ′ < 1. Then there exist two constants Cθ, Cθ′ such that

lim
k→∞

1

k

k−1
∑

t=0

x
i,θ
t = Cθ, lim

k→∞

1

k

k−1
∑

t=0

x
i,θ′

t = Cθ′ , w.p.1.

Lemma D.3 We have Cθ ≤ Cθ′.

Proof. The lemma follows from the relation x
i,θ
t = 1−m

i,θ
t for t ≥ 0, Lemmas D.1 and D.2. �

Remark D.1 Due to the ergodicity of the Markov chains in Lemma D.3, the initial states x
i,θ
0 and

x
i,θ′

0 can be arbitrary.

Proof of Theorem 5. By the ergodicity of {xi,θt , t ≥ 0}, we have z(θl) = limk→∞
1
k

∑k−1
t=0 x

i,θl
t w.p.1.

Lemma D.3 implies z(θ1) ≤ z(θ2). �
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