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Abstract This paper considers continuous time stochastic growth-consumption opti-
mization in a mean field game setting. The individual capital stock evolution is
determined by a Cobb–Douglas production function, consumption and stochastic
depreciation. The individual utility functional combines an own utility and a rela-
tive utility with respect to the population. The use of the relative utility reflects human
psychology, leading to a natural pattern of mean field interaction. The fixed point
equation of the mean field game is derived with the aid of some ordinary differential
equations. Due to the relative utility interaction, our performance analysis depends on
some ratio based approximation error estimate.
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1 Introduction

Mean field game theory studies a large population of noncooperative players which
are individually insignificant but collectively have a significant impact on a particular
player. It provides a powerful methodology for reducing complexity in design and
implementation of strategies [22–24,29]. The solution to the infinite population model
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leads to the construction of a set of decentralized strategies for the original large
but finite population with an ε-Nash equilibrium property [22–24]. Another related
solution notion in Markov decision models is the oblivious equilibrium [38]. For
further literature in the stochastic analysis setting, see [9,10,17,28]. The readers are
referred to [6–8,18] for an overview on mean field game theory. Mean field games
have found wide applications, and we particularly mention those related to smart grids
[14,27,32], economics, finance and operations research [1,10,12,15,19,31].

An application area of interest is capital accumulation with endogenous growth
dynamics. Its study in a Nash game setting for multiple producers has existed in the
literature [3]. A mean field game approach has been developed in a discrete time
model [21] for consumption-accumulation optimization with hyperbolic absolute risk
aversion (HARA) utility, where the coupling is due to a congestion effect [5] of the
population on the growth dynamics. The recent work [25,26] studies continuous time
mean field modeling for growth optimization and takes into account stochastic depre-
ciation for the capital stock of an agent. On the other hand, it has long been observed
in the economic literature that the satisfaction of an agent can be affected by the com-
parison utility with respect to the peers [2,11,20,36]. Relative performance has been
introduced into a mean field game model of investment in [15] where an agent, apart
from other goals, is concerned with the difference between its own wealth and the
average of others at the terminal time. The work [26] considers a different mean field
interaction pattern by including within the utility function a multiplicative factor as
the ratio of it own consumption to the population average consumption. This modeling
feature greatly facilitates the explicit computations of the individual strategies. The
fixed point equation for the solution of the mean field game is specified with the aid
of a system of ordinary differential equations. However, a remaining complexity issue
is that the numerical solution still needs to compute the density evolution of the state
process.

In this paper, we adopt a multiplicative coupling similar to [26], but the present
relative performance is based on relative utility via a ratio of its own utility to the
population average utility. The resulting relative performance is combined with a
Cobb–Douglas production function. As it turns out, this modeling framework has a
very appealing feature in that the numerical implementation of the strategies no longer
needs the density equation of the state process. To characterize the performance of
the obtained strategies, a key task is to estimate the concentration of the above ratio
around the value one. We further present some error bound on an ε-Nash equilibrium.

It should be noted that except for the linear-quadratic-Gaussian (LQG) [4,22,30]
and linear-exponential-quadratic-Gaussian (LEQG) [35] cases of mean field games,
it is rare to have closed-form solutions available. For many situations, the implemen-
tation of the strategies relies on demanding numerical solutions of partial differential
equations. Though not in an LQG setting, our problem formulation is computationally
amenable.

The organization of the paper is as follows. Section 2 introduces the dynamics
and utility functional of the mean field game. A limiting optimal control problem is
analyzed in Sect. 3 to determine the best response. Section 4 introduces the fixed point
equation of the mean field game. Section 5 develops error estimates for the mean field
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approximation, and establishes an ε-Nash equilibrium theorem. Numerical solutions
of the fixed point equation are presented in Sect. 6. Section 7 concludes the paper.

2 The Mean Field Model with Finite Population

We start by describing a game of N agents (as economic entities). The capital stock
of agent i is denoted by Xi

t which satisfies the stochastic differential equation (SDE)

d Xi
t =

[
A(Xi

t )
α − δXi

t − Ci
t

]
dt − σ Xi

t dW i
t , 1 ≤ i ≤ N , t ≥ 0, (1)

where the constants 0 < α < 1, A > 0, Xi
0 > 0, E Xi

0 < ∞, and {W i
t , 1 ≤ i ≤ N }

are i.i.d. standard Brownian motions. The N agents have i.i.d. initial states {Xi
0, 1 ≤

i ≤ N } which are also independent of the N Brownian motions {W i
t , 1 ≤ i ≤ N }.

The production function F(x) = Axα determines the production output contributed
by capital stock, and may be regarded as a Cobb–Douglas production function (see
e.g. [16,34]) with capital x and a constant labor size. Moreover, δdt + σdW i

t is the
stochastic capital depreciation rate andCi

t ≥ 0 is the consumption rate. The pioneering
work of Merton [33] introduced stochastic differential equations to model economic
growth where uncertainty originates from population growth described by a geometric
Brownian motion. For existing works examining the effect of stochastic depreciation,
see [16,37].

The utility functional of agent i takes the form

Ji

(
C1, . . . , C N

)
= E

[∫ T

0
e−ρtU

(
Ci

t , C (N ,γ )
t

)
dt + e−ρT S(XT )

]
, (2)

where C (N ,γ )
t = 1

N

∑N
i=1(C

i
t )

γ is an average term related to the population and
γ ∈ (0, 1). For simplicity, we take S to be only dependent on XT . We take the utility
function

U
(

Ci
t , C (N ,γ )

t

)
= 1

γ
(Ci

t )
γ (1−λ)

[
(Ci

t )
γ

C (N ,γ )
t

]λ

. (3)

The parameter λ ∈ [0, 1]. This utility structure has to do with human psychology of
comparing with peers. Similar utility functions can be found in [2,20], but they are
based on relative consumptions.

Denote

U0(C
i
t ) = 1

γ
(Ci

t )
γ , U1

(
Ci

t , C (N ,γ )
)

= 1

γ

(Ci
t )

γ

C (N ,γ )
t

,

which will be called the own utility and the relative utility, respectively. Then

U
(

Ci
t , C (N ,γ )

t

)
is a weighted geometric mean of U0 and U1, i.e.,
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U = U 1−λ
0 Uλ

1 .

The utility functionU reduces to the own utility when λ = 0, and to the relative utility
when λ = 1.

For a given θ , U (c, θ) determines a HARA utility since

U (c, θ) = cγ

γ θλ
,

where 1 − γ is usually called the relative risk aversion coefficient. It is in fact a
constant relative risk aversion (CRRA) utility as a special case of the HARA utility.

We further take

S(x) = ηxγ

γ
, (4)

whereη > 0 is a constant. Todevelop explicit calculation,we introduce the assumption

γ = 1 − α.

There is economic justification for such a choice of γ while α is an inherent parameter
of the growth model. The interpretation is equalizing the coefficient of the relative risk
aversion to capital share; see [13,16] for details. For notational simplicity, our further
analysis will use the single parameter γ and substitute α = 1 − γ .

3 The Limiting Model

For sufficiently large N , we may approximate C (N ,γ )
t by a deterministic function C̄ (γ )

t
defined on [0, T ], and this can be heuristically justified by the law of large numbers
as long as the individual controls satisfy some mild conditions.

Consider a representative agent. Let its capital stock be denoted by Xt with dynam-
ics

d Xt =
(

AX1−γ
t − δXt − Ct

)
dt − σ Xt dWt , t ≥ 0, (5)

where we no longer use the superscript i to label the agent. The initial state X0 > 0,
and we have the constraint Xt ≥ 0, Ct ≥ 0 for t ∈ [0, T ].

The utility functional is now given as

J̄ (C(·)) = E

[∫ T

0
e−ρtU

(
Ct , C̄ (γ )

t

)
dt + e−ρT S(XT )

]
, (6)

where U (Ct , C̄ (γ )
t ) and S(XT ) are given as in (3)–(4),
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U (Ct , C̄ (γ )
t ) = 1

γ

[
Cγ

t

]1−λ
[

Cγ
t

C̄ (γ )
t

]λ

, S(XT ) = ηXγ

T

γ
.

LetC([0, T ];R+) denote the set of continuous functions which are strictly positive on
[0, T ]. To avoid a zero division problem, we will consider C̄ (γ )(·) ∈ C([0, T ];R+).

The admissible control set consists of all consumption processes Ct adapted to the
filtration generated by X0, Ws , s ≤ t such that Xt ≥ 0 for all t ∈ [0, T ]. A natural
problem is to choose a consumption plan to maximize the functional J̄ for the agent
in question.

Before further analysis, we make a note on notation. We use t in Xt , Ct , Wt , etc.
to indicate the value of the process or function at time t . Only for Vt (t, x) appearing
in various Hamilton–Jacobi–Bellman (HJB) equations, it means the partial derivative
with respect to t . The interpretation should be clear from the context. Sometimes we
use C(·), C̄ (γ )(·), etc. to indicate a process or function on [0, T ]. We use D to denote
a generic constant that may change from place to place.

3.1 2-Step Solution

The solution of this infinite population model consists of two steps:
Step 1. Find the optimal strategy Ĉt when the function C̄ (γ )(·) is fixed.
Step 2. Write the closed-loop state equation

d Xt =
(

AX1−γ
t − δXt − Ĉt

)
dt − σ Xt dWt ,

and, following the standard approach in mean field games, further impose the consis-
tency condition

C̄ (γ )
t = EĈγ

t , t ∈ [0, T ], (7)

which is due to the fact that C̄ (γ )
t is used to approximate 1

N

∑N
i=1(Ĉ

i
t )

γ .
The remaining part of this section will carry out Step 1.

3.2 The Best Response and HJB Equation

For the optimal control problem (5)–(6), we consider a general function C̄ (γ )
t without

imposing the consistency condition (7). For 0 ≤ t ≤ T and x > 0, further define the
utility functional associated with the initial pair (t, x) as

J̄ (t, x, C(·)) = Et,x

[∫ T

t
e−ρ(s−t)U

(
Cs, C̄ (γ )

s

)
ds + e−ρ(T −t)S(XT )

]
,
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where Et,x denotes the expectation given Xt = x . Define the value function

V (t, x) = sup
C(·)

J̄ (t, x, C(·)).

We write the HJB equation

ρV (t, x) = Vt + σ 2x2

2
Vxx + sup

c

[
U (c, C̄ (γ )

t ) +
(

Ax1−γ − δx − c
)

Vx

]
, x > 0,

(8)

V (T, x) = S(x).

3.3 More Explicit Form of the HJB Equation

Let C̄ (γ )
t be fixed. Denote

Bt = (
C̄ (γ )

t
)λ

.

Equation (8) reduces to

ρV (t, x) = Vt + σ 2x2

2
Vxx + sup

c

{
cγ

γ Bt
+

(
Ax1−γ − δx − c

)
Vx

}
. (9)

If the condition

Vx > 0 (10)

holds, supc

{
cγ

γ Bt
− cVx

}
is attained at

c = (
Bt Vx

) 1
γ−1 (11)

and accordingly (9) is equivalent to

ρV (t, x) = Vt + σ 2x2

2
Vxx +

(
Ax1−γ − δx

)
Vx + 1 − γ

γ
B

1
γ−1
t V

γ
γ−1

x . (12)

The terminal condition is V (T, x) = ηxγ

γ
due to (4).

To solve (12), we try the ansatz

V (t, x) = 1

γ

[
p(t)xγ + h(t)

]
, x > 0, t ≥ 0.
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Then we have

Vt = 1

γ

[
ṗ(t)xγ + ḣ(t)

]
,

and

Vx = p(t)xγ−1, Vxx = (γ − 1)p(t)xγ−2.

Substituting these expressions into (12) yields

ρ

γ

(
pxγ + h

)
= 1

γ

[
ṗxγ + ḣ

]
+σ 2

2
(γ − 1)pxγ +Ap − δpxγ +1 − γ

γ
B

1
γ−1
t p

γ
γ−1 xγ .

(13)

By (13), we obtain two ordinary differential equations (ODEs)

ṗ(t) =
[
ρ + σ 2γ (1 − γ )

2
+ δγ

]
p(t) − (1 − γ )B

1
γ−1
t p

γ
γ−1 (t), (14)

p(T ) = η,

ḣ(t) = ρh(t) − γ Ap(t), (15)

h(T ) = 0.

Theorem 1 For given C̄ (γ ) ∈ C([0, T ];R+), the system (14)–(15) has a unique
solution (p, h), where p ∈ C([0, T ];R+), and the optimal control in (5)–(6) is given
in the feedback form

Ĉt = (
Bt p(t)

) 1
γ−1 Xt .

Proof Define

a = 1

1 − γ

[
ρ + σ 2γ (1 − γ )

2
+ δγ

]
, bt = B

1
γ−1
t .

Define the new function ϕ via p = ϕ1−γ . Then (14) reduces to

(1 − γ )ϕ−γ ϕ̇ = (1 − γ )aϕ1−γ − (1 − γ )btϕ
−γ ,

which gives ϕ̇ = aϕ − bt , and ϕ(T ) = η
1

1−γ . Solving this ODE we obtain a unique
solution

ϕ(t) = ea(t−T )η
1

1−γ + eat
∫ T

t
e−asbsds > 0.
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Consequently, we obtain the unique solution

p(t) =
[

ea(t−T )η
1

1−γ + eat
∫ T

t
e−asbsds

]1−γ

> 0.

It is clear that p ∈ C([0, T ];R+). We continue to solve (15), and the unique solution
of h can be obtained accordingly. The optimal control follows from the relation (11).

��
It is seen that the solution of (p, h) ensures condition (10).

Theorem 2 The closed-loop system of (5) with the control Ĉt has a unique strong
solution Xt , t ∈ [0, T ].
Proof The closed-loop dynamics are

d Xt =
[

AX1−γ
t − δXt − (

Bt p(t)
) 1

γ−1 Xt

]
dt − σ Xt dWt , X0 > 0.

Denote τ = inf{t |Xt = 0, t ≤ T }. Following the method in [34], define Zt = Xγ
t

for t < τ . According to Itô’s formula, Zt satisfies the following linear SDE

d Zt =
{
γ A − γ

[
δ+(Bt p(t))

1
γ−1 + σ 2(1 − γ )

2

]
Zt

}
dt − γ σ Zt dWt , Z0 = Xγ

0 .

Note that from this equation we can solve a unique solution Zt > 0 on [0, T ]. This
determines a unique solution for Xt on [0, T ] and so P(τ ≤ T ) = 0. ��

4 The Fixed Point Equation

This section carries out Step 2 outlined in Sect. 3.1. Recall that

Bt = (
C̄ (γ )

t
)λ

, bt = B
1

γ−1
t . (16)

Although we may formalize the fixed point condition in terms of C̄ (γ )
t , it turns out

to be more convenient to deal with bt . Let bt be given and b ∈ C([0, T ];R+). For
0 ≤ t ≤ T , denote


0(b)t = p
1

γ−1 (t) =
[
ea(t−T )η

1
1−γ + eat

∫ T

t
e−asbsds

]−1
, 
1(b)t = bt
0(b)t .

(17)

We use 
k(b)t to denote the value of the function 
k(b) at t , k = 0, 1. Thus, the
best response is given in the form Ĉt = 
1(b)t Xt , which gives the closed-loop state
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equation

d Xt =
[

AX1−γ
t − δXt − 
1(b)t Xt

]
dt − σ Xt dWt . (18)

Based on (18), define the operator � by

�(b)t = (
E Xγ

t
) 1

γ , 0 ≤ t ≤ T . (19)

According to (16), bt = (C̄ (γ )
t )

λ
γ−1 . The equation of Xt further gives

(EĈγ
t )

λ
γ−1 = [(


1(b)t
)γ

E Xγ
t
] λ

γ−1 = [
1(b)t�(b)t ]
λγ

γ−1 =: 
(b)t , (20)

which together with the consistency condition (7) leads to the fixed point equation

bt = 
(b)t , t ∈ [0, T ]. (21)

We summarize the following theorem.

Theorem 3 Suppose that b ∈ C([0, T ];R+) is a solution of (21). Denote by X∗
t the

solution of (18) and set the continuous function

C̄ (γ )
t = (


1(b)t
)γ

E(X∗
t )γ , 0 ≤ t ≤ T .

Then the control law Ĉt = 
1(b)t Xt is optimal for the control problem (5)–(6) with
C̄ (γ )

t selected as above and furthermore, the closed-loop system gives EĈγ
t = C̄ (γ )

t .

Next, we consider the fixed point problem (21). For simplicity, we further assume
that the i.i.d. initial conditions {Xi

0, i ≥ 1} satisfy

d1 ≤ Xi
0 ≤ d2, i ≥ 1,

for some positive constants d1, d2. Denote d0 = [
E(Xi

0)
γ
] 1

γ . For positive numbers
D1 < D2, let C([0, T ]; [D1, D2]) denote the subset of C([0, T ];R) which contains
all continuous functions from [0, T ] to [D1, D2]. For b1, b2 ∈ C([0, T ]; [D1, D2]),
denote d(b1, b2) = ‖b1 − b2‖∞. Then

(
C([0, T ]; [D1, D2]), d(·, ·)) is a complete

metric space. We have the following lemma.

Lemma 4 (i) There exist constants D4 and D6 such that for any b ∈ C([0, T ];R+),


0(b)t ≤ D4, �(b)t ≤ D6, 0 ≤ t ≤ T . (22)

(ii) If b ∈ C([0, T ];R+) and ‖b‖∞ ≤ D2 for some constant D2, then there exist
constants D3 > 0, D5 > 0 such that


0(b)t ≥ D3, �(b)t ≥ D5, 0 ≤ t ≤ T . (23)
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Proof (i) It follows from (17) that


0(b)t ≤ eaT η
− 1

1−γ =: D4. (24)

Next, let Xt be the solution to (18) and Xu
t the solution of the SDE

d Xu
t = A(Xu

t )1−γ dt − σ Xu
t dWt , Xu

0 = X0. (25)

Note that AX1−γ − (
δ + 
1(b)t

)
X ≤ AX1−γ for any b ∈ C([0, T ];R+), 0 ≤

t ≤ T and X > 0. Hence, according to the comparison theorem to the solutions
to (18) and (25), we have Xt ≤ Xu

t for 0 ≤ t ≤ T . Denote Zu
t = (Xu

t )γ . By Itô’s
formula,

d Zu
t = γ

[
A − (1 − γ )σ 2

2
Zu

t

]
dt − γ σ Zu

t dWt , Zu
0 = Xγ

0 .

This linear SDE admits the explicit solution

Zu
t = exp

{
− γ σ 2

2
t − γ σ Wt

} [
Xγ
0 + γ A

∫ t

0
exp

{γ σ 2

2
s + γ σ Ws

}
ds

]
.

(26)

Since γ ∈ (0, 1), by taking expectations on both sides of (26) and using the identity

E[exp(σ Wt )] = exp
(

σ 2

2 t
)
, we arrive at

E Zu
t = E(X0)

γ E exp
{

− γ σ 2

2
t − γ σ Wt

}

+ γ A
∫ t

0
E exp

{
− γ σ 2

2
(t − s) − γ σ(Wt − Ws)

}
ds

= dγ
0 exp

(
γ (γ − 1)σ 2t

2

)
+ γ A

∫ t

0
exp

(
γ (γ − 1)σ 2(t − s)

2

)
ds

≤ dγ
0 + γ AT . (27)

Thus, it follows from (19) that

�(b)t = [
E

(
Xt

)γ ] 1
γ ≤ [

E
(
Xu

t

)γ ] 1
γ = [

E Zu
t

] 1
γ ≤ [

dγ
0 + γ AT

] 1
γ =: D6 (28)

for any 0 ≤ t ≤ T .
(ii) Since 0 < bt ≤ D2 for 0 ≤ t ≤ T , it follows from (17) that


0(b)t ≥
[
η

1
1−γ + T D2

]−1 =: D3. (29)
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To proceed, let Xl
t be the solution to the SDE

d Xl
t =

[
A(Xl

t )
1−γ − (δ + D2D4)Xl

t

]
dt − σ Xl

t dWt , Xl
0 = X0. (30)

Since bt ≤ D2 and 
0(b)t ≤ D4, AX1−γ − (δ + D2D4)X ≤ AX1−γ − (δ +

1(b)t )X for 0 ≤ t ≤ T, X > 0. By the comparison theorem for (18) and (30),
we have Xl

t ≤ Xt for 0 ≤ t ≤ T . Denote Zl
t = (Xl

t )
γ . Then Itô’s formula yields

d Zl
t = γ

[
A −

(
δ + D2D4 + (1 − γ )σ 2

2

)
Zl

t

]
dt − γ σ Zl

t dWt , Zl
0 = Xγ

0 .

(31)

This linear SDE admits the explicit solution

Zl
t = exp

{
− γ

(
δ + D2D4 + σ 2

2

)
t − γ σ Wt

}

×
[

Xγ
0 + γ A

∫ t

0
exp

{
γ
(
δ + D2D4 + σ 2

2

)
s + γ σ Ws

}
ds

]

≥Xγ
0 exp

{
− γ

(
δ + D2D4 + σ 2

2

)
t − γ σ Wt

}
. (32)

Again, using the identity E[exp(−σ Wt )] = exp
(

σ 2t
2

)
and taking expectations in

the above equation and inequality yield

E Zl
t ≥ dγ

0 E exp
{

− γ
(
δ + D2D4 + σ 2

2

)
t − γ σ Wt

}

≥ dγ
0 exp

{
− γ

(
δ + D2D4

)
T

}
.

Therefore, for any 0 ≤ t ≤ T ,

�(b)t =
[

E(Xt )
γ
] 1

γ ≥
[

E(Xl
t )

γ
] 1

γ =
[

E Zl
t

] 1
γ

≥ d0 exp
{

−
(
δ + D2D4

)
T

}
=: D5. (33)

This completes the proof.
��

Lemma 5 There exist constants K0, K1, K2 such that for any b1, b2 ∈ C([0, T ];R+),

d
(

0(b

1), 
0(b
2)

)
≤ K0d(b1, b2), (34)

d
(

1(b

1), 
1(b
2)

)
≤ K1d(b1, b2), (35)

d
(
�(b1),�(b2)

)
≤ K2d(b1, b2). (36)

123



654 Appl Math Optim (2016) 74:643–668

Proof Denote

K0 = T D2
4, K1 = D2K0 + D4. (37)

Then (34) and (35) are obtained from (17) by direct calculations. It remains to prove
(36). To this end, let Xb1

t and Xb2
t be solutions to the following SDEs

d Xb1
t =

[
A(Xb1

t )1−γ − (
δ + 
1(b

1)t
)
Xb1

t

]
dt − σ Xb1

t dWt , Xb1
0 = X0,

d Xb2
t =

[
A(Xb2

t )1−γ − (
δ + 
1(b

2)t
)
Xb2

t

]
dt − σ Xb2

t dWt , Xb2
0 = X0.

Denote Z1
t =

(
Xb1

t

)γ

and Z2
t =

(
Xb2

t

)γ

. Again, by Itô’s formula, Z1
t and Z2

t satisfy

d Z1
t = γ

[
A −

(
δ + 
1(b

1)t + (1 − γ )σ 2

2

)
Z1

t

]
dt − γ σ Z1

t dWt , Z1
0 = Xγ

0 ,

d Z2
t = γ

[
A −

(
δ + 
1(b

2)t + (1 − γ )σ 2

2

)
Z2

t

]
dt − γ σ Z2

t dWt , Z2
0 = Xγ

0 .

These linear SDEs admit the explicit solutions

Zi
t = exp

{
− γ

(
δ + σ 2

2

)
t − γ

∫ t

0

1(b

i )sds − γ σ Wt

}

×
[

Xγ
0 + γ A

∫ t

0
exp

{
γ
(
δ + σ 2

2

)
s + γ

∫ s

0

1(b

i )udu + γ σ Ws

}
ds

]

= Xγ
0 exp

{
− γ

(
δ + σ 2

2

)
t − γ

∫ t

0

1(b

i )sds − γ σ Wt

}

+ γ A
∫ t

0
exp

{
− γ

(
δ + σ 2

2

)
(t − s) − γ

∫ t

s

1(b

i )udu − γ σ(Wt − Ws)
}

ds,

(38)

for i = 1, 2. Again, by a comparison theorem, we have Zi
t ≤ Zu

t for i = 1, 2, where
Zu

t is defined in (26). We have

d(�(b1),�(b2)) = sup
0≤t≤T

∣∣�(b1)t − �(b2)t
∣∣ = sup

0≤t≤T

∣∣∣∣
[
E Z1

t

] 1
γ − [

E Z2
t

] 1
γ

∣∣∣∣ .
(39)

By the inequality

∣∣∣a 1
γ − b

1
γ

∣∣∣ ≤ |a − b|
γ

max

{
a

1−γ
γ , b

1−γ
γ

}
, a, b > 0
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and the fact that max{E Z1
t , E Z2

t } ≤ E Zu
t , we obtain

∣∣∣∣
[
E Z1

t

] 1
γ − [

E Z2
t

] 1
γ

∣∣∣∣ ≤ 1

γ

∣∣E Z1
t − E Z2

t

∣∣(E Zu
t

) 1−γ
γ . (40)

Next, we estimate
∣∣E Z1

t − E Z2
t

∣∣. Using the inequality |e−a − e−b| ≤ |a − b| for
a, b ≥ 0 and (35), we have

∣∣∣∣exp
{

− γ

∫ t

s

1(b

1)udu
}

− exp
{

− γ

∫ t

s

1(b

2)udu
}∣∣∣∣

≤ γ

∫ t

s

∣∣
1(b
1)u − 
1(b

2)u
∣∣du

≤ γ T K1d(b1, b2), (41)

for any 0 ≤ s ≤ t ≤ T . It follows from (38) and (41) that

∣∣E Z1
t − E Z2

t

∣∣

≤ [
E Xγ

0

][
E exp

{
− γ

(
δ + σ 2

2

)
t − γ σ Wt

}]

×
∣∣∣∣exp

{ − γ

∫ t

0

1(b

1)sds
}

− exp
{

− γ

∫ t

0

1(b

2)sds
}∣∣∣∣

+ γ A
∫ t

0

[
E exp

{
− γ

(
δ + σ 2

2

)
(t − s) − γ σ(Wt − Ws)

}]

×
∣∣∣∣exp

{
− γ

∫ t

s

1(b

1)udu
}

− exp
{

− γ

∫ t

s

1(b

2)udu
}∣∣∣∣ ds

≤ γ T K1d(b1, b2)

[
dγ
0 exp

{
− γ

(
δ + σ 2

2

)
t + γ 2σ 2t

2

}

+ γ A
∫ t

0
exp

{
− γ

(
δ + σ 2

2

)
(t − s) + γ 2σ 2(t − s)

2

}
ds

]

≤ γ T
[
dγ
0 + γ AT

]
K1d(b1, b2). (42)

We have used the fact that γ ∈ (0, 1) in the last inequality. Combining (39), (40), (27)
and (42), we have

d(�(b1),�(b2)) ≤ T
[
dγ
0 + γ AT

] 1
γ K1d(b1, b2) = K1D6T d(b1, b2).

This implies (36) with

K2 = K1D6T . (43)

This completes the proof. ��
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Theorem 6 (i) There exist positive constants D1, D2 such that


 : C([0, T ]; [D1, D2]) → C([0, T ]; [D1, D2]).

(ii) There exists a constant K such that

d(
(b1), 
(b2)) ≤ K d(b1, b2) (44)

for any pair b1, b2 in C([0, T ]; [D1, D2]).
Proof (i) First we take

D2 = (D4D6)
θ

1−θ , (45)

where θ = λγ
1−γ

, D4 and D6 are respectively given in (24) and (28). Thus, by

Lemma 4 (i), for any b ∈ C([0, T ];R+) satisfying bt ≤ D2 for any 0 ≤ t ≤ T ,
we have


(b)t =
[
bt
0(b)t�(b)t

] λγ
1−γ ≤ (D2D4D6)

θ = D2. (46)

Next, we apply Lemma 4 (ii) with D2 given in (45) and define D3 and D5 respec-
tively as in (29) and (33). Denote

D1 = (D3D5)
θ

1−θ . (47)

It follows from Lemma 4 (ii) that for any b ∈ C([0, T ];R+) satisfying bt ≥ D1
for any 0 ≤ t ≤ T , we have


(b)t =
[
bt
0(b)t�(b)t

] λγ
1−γ ≥ (D1D3D5)

θ = D1. (48)

Combining (46) and (48) implies
 : C([0, T ]; [D1, D2]) → C([0, T ]; [D1, D2]).
(ii) For any b ∈ C([0, T ]; [D1, D2]), we have

(

1(b)t�(b)t

) λγ
1−γ

−1 = 
(b)t

bt
0(b)t�(b)t
≤ D2

D1D3D5
. (49)

Therefore, using the elementary inequality |aθ − bθ | ≤ θ |a − b|max(aθ−1, bθ−1)

for θ = λγ
1−γ

, a, b > 0, Lemmas 4 and 5, we have

|
(b1)t − 
(b2)t | =
∣∣∣
(

1(b

1)t�(b1)t

) λγ
1−γ −

(

1(b

2)t�(b2)t

) λγ
1−γ

∣∣∣

≤ λγ

1 − γ

∣∣∣
1(b
1)t�(b1)t
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− 
1(b
2)t�(b2)t

∣∣∣ max
i=1,2

{(

1(b

i )t�(bi )t

) λγ
1−γ

−1}

≤ λγ

1 − γ

D2

D1D3D5

∣∣∣
1(b
1)t�(b1)t − 
1(b

2)t�(b2)t

∣∣∣

≤ λγ

1 − γ

D2

D1D3D5

[

1(b

1)t

∣∣∣�(b1)t − �(b2)t

∣∣∣

+
∣∣∣
1(b

1)t − 
1(b
2)t

∣∣∣�(b2)t

]

≤ λγ

1 − γ

D2

D1D3D5

(
D2D4K1 + D6K2

)
d(b1, b2). (50)

This leads to

d
(

(b1), 
(b2)

)
= sup

0≤t≤T

∣∣∣
(b1)t − 
(b2)t

∣∣∣ ≤ K d(b1, b2),

where

K = λγ

1 − γ

D2

D1D3D5

(
D2D4K1 + D6K2

)
. (51)

��
The following corollary is a direct consequence of Theorem 6 and the contraction

mapping theorem.

Corollary 7 If K < 1 in (51), then (21)has a unique solution b ∈ C([0, T ], [D1, D2]),
where D1 and D2 are respectively defined in (47) and (45).

Remark 1 A potentially useful approach to prove the existence of a solution to (21) is
to apply Schauder’s theorem. This would rely on analyzing equicontinuity properties
of functions defined on [0, T ] under the operator 
.

5 Mean Field Approximation and ε-Nash Equilibrium

So far our analysis in Sects. 3 and 4 focusses on the infinite population model where
the utility functional involves C̄ (γ ). The question now is how to justify such an approx-
imation in a finite population model.

The capital stock of agent i , 1 ≤ i ≤ N , satisfies the following equation

d Xi
t =

[
A(Xi

t )
1−γ − δXi

t − Ci
t

]
dt − σ Xi

t dW i
t , t ≥ 0,

and the utility functional of agent i has the form

Ji (C
1, . . . , C N ) = E

[∫ T

0

e−ρt

γ

[ (
Ci

t

)γ

(
C (N ,γ )

t
)λ

]
dt + e−ρT η

(Xi
T )γ

γ

]
.
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Below we consider the case λ > 0. Once bt is determined from (21), we further
obtain

C̄ (γ )
t = b

γ−1
λ

t . (52)

Let all the agents apply the decentralized strategies

Ĉi
t = 
1(b)t X i

t , 1 ≤ i ≤ N ,

which correspond to the following closed-loop state equations:

d X̂ i
t =

[
A(X̂ i

t )
1−γ − δ X̂ i

t − 
1(b)t X̂ i
t

]
dt − σ X̂ i

t dW i
t , 1 ≤ i ≤ N , t ≥ 0.

(53)

Denote

Ĉ (N ,γ )
t = 1

N

N∑
i=1

(Ĉi
t )

γ .

The error estimate for the mean field approximation is given in the following the-
orem.

Theorem 8 Suppose that b ∈ C([0, T ];R+) is a solution of (21) with λ > 0 and the
i.i.d. initial conditions Xi

0 satisfy E |Xi
0|2γ < ∞. Then

E |Ĉ (N ,γ )
t − C̄ (γ )

t |2 = O
( 1

N

)
.

Proof Denote Ẑ i
t = (X̂ i

t )
γ . Itô’s formula yields the following linear SDE

d Ẑ i
t = γ

{
A −

[
δ + 
1(b)t + σ 2(1 − γ )

2

]
Ẑ i

t

}
dt − γ σ Ẑ i

t dW i
t . (54)

Similar to (38), we have

Ẑ i
t = (Xi

0)
γ exp

{
− γ

(
δ + σ 2

2

)
t − γ

∫ t

0

1(b)sds − γ σ W i

t

}

+ γ A
∫ t

0
exp

{
− γ

(
δ + σ 2

2

)
(t − s) − γ

∫ t

s

1(b)udu − γ σ(W i

t − W i
s )

}
ds.

(55)

Since E |Ẑ i
0|2 = E |Xi

0|2γ < ∞, it follows that sup
0≤t≤T

E |Ẑ i
t |2 < ∞ and

sup
0≤t≤T

E |X̂ i
t |2γ < ∞. Note that (Ĉi

t )
γ = (
1(b)t X̂ i

t )
γ = (
1(b)t )

γ Ẑ i
t and D1D3 ≤
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1(b)t ≤ D2D4 for 0 ≤ t ≤ T . Hence,
{
(Ĉi

t )
γ , 1 ≤ i ≤ N

}
is a sequence of i.i.d.

random variables with bounded second moments for each fixed t , 0 ≤ t ≤ T . Since
bt is the solution to the fixed point Eq. (21), Theorem 3 implies C̄ (γ )

t = E
(
Ĉi

t

)γ for
i = 1, . . . , N . We have

E |Ĉ (N ,γ )
t − C̄ (γ )

t |2 = E

∣∣∣∣∣
1

N

N∑
i=1

((
Ĉi

t

)γ − E
(
Ĉi

t

)γ
)∣∣∣∣∣

2

= 1

N 2

N∑
i=1

E
((

Ĉi
t

)γ − E
(
Ĉi

t

)γ
)2

= 1

N
E

((
Ĉ1

t

)γ − E
(
Ĉ1

t

)γ
)2 = O

( 1

N

)
.

This completes the proof. ��
Let the consumption of all agents other than agent i be Ĉ−i = (Ĉ1,

. . . , Ĉi−1, Ĉi+1, . . . , Ĉ N ). Recall that J̄ (·) is the utility functional of the limiting
problem defined in (6). For simplicity of further performance estimates, we consider
the case that all initial states are bounded, i.e.,

d1 ≤ Xi
0 ≤ d2, 1 ≤ i ≤ N ,

for some positive constants d1 and d2. For the performance estimate, some special
analysis is required to deal with the non-Lipschitz form of the growth dynamics and
the ratio type coupling term in the utility functional. We have the following estimate
on the approximation of utility functionals.

Theorem 9 Suppose that b ∈ C([0, T ];R+) is a solution of (21) with λ > 0 and
bounded i.i.d. initial conditions Xi

0. Then

∣∣Ji

(
Ĉi , Ĉ−i

)
− J̄

(
Ĉi

) ∣∣ = O
(

N− 1
2

)
.

Denote by U i the set of all admissible consumption processes Ci
t ≥ 0 which are

adapted to the filtration generated by X j
0 , W j

s , j = 1, . . . , N , s ≤ t such that the
corresponding state Xi

t > 0 for all t ∈ [0, T ]. We are now in a position to state the
main result on the ε-Nash equilibrium.

Theorem 10 Under the conditions of Theorem 9, we have

Ji (Ĉ
i , Ĉ−i ) ≤ sup

Ci (·)∈Ui

Ji (C
i , Ĉ−i ) ≤ Ji (Ĉ

i , Ĉ−i ) + εN ,

where εN = O(N− 1
2 ).

Note that Ci in Theorem 10 is allowed to use sample path information of all agents.
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5.1 Proof of Theorems 9 and 10

We have the following lemma.

Lemma 11 There is a fixed constant D such that E
∫ T
0 Ci

t dt ≤ D for all admissible
consumption processes Ci ∈ Ui .

Proof Let Ci
t be a fixed. Then the equation

d Xi
t = [

A(Xi
t )
1−γ − δXi

t − Ci
t

]
dt − σ Xi

t dW i
t , 0 ≤ t ≤ T

has a unique solution Xi
t and Xi

t > 0 on [0, T ]. Let Y i
t be the unique solution to the

linear stochastic differential equation

dY i
t = [

A(Y i
t )1−γ − δY i

t

]
dt − σY i

t dW i
t , 0 ≤ t ≤ T, Y i

0 = Xi
0.

Denote Zt = (Xi
t )

γ , Z̃t = (Y i
t )γ , B = δ + (1−γ )σ 2

2 , ft = γ Ci
t (Xi

t )
γ−1 and zt =

Z̃t − Zt . Then Itô’s formula gives

dzt = (−γ Bzt + ft )dt − γ δzt dW i
t , 0 ≤ t ≤ T, z0 = 0.

We can show this equation has a unique solution. For each positive integer k, denote
by zk

t the unique solution to the following equation

dzk
t =

(
−γ Bzk

t + ft

)
dt − γ δzk

t dW i
t , 0 ≤ t ≤ T, zk

0 = 1

k
.

It is clear that zk
t = zt + yk

t where yk
t is represented by the linear equation

dyk
t = −γ Byk

t dt − γ δyk
t dW i

t , 0 ≤ t ≤ T, yk
0 = 1

k

which admits the explicit solution

dyk
t = 1

k
exp

{
−

(
γ B + γ 2σ 2

2

)
t − γ σ W i

t

}
, 0 ≤ t ≤ T . (56)

To proceed, we shall prove that zk
t > 0 for t ∈ [0, T ] and any positive integer k. For

n = 1, 2, . . . , let τn = inf{t > 0 : zk
t = 1

2kn } then τ1 < τ2 < . . .. Denote xk
t = log zk

t

if 0 ≤ t ≤ τn ∧ T for some n. Then we can show that on [0, τn ∧ T ], xk
t has the

following representation

xk
t = − log k +

∫ t

0

[
−

(
γ B + γ 2σ 2

2

)
+ fs

zk
s

]
ds −

∫ t

0
γ σdW i

s

= − log k −
(
γ B + γ 2σ 2

2

)
t − γ σ W i (t) +

∫ t

0

fs

zk
s

ds.

123



Appl Math Optim (2016) 74:643–668 661

Note that on the set {limn→∞ τn ≤ T } we must have limn→∞ xk
τn∧T = −∞. Since

fs
zk

s
> 0 for 0 ≤ s ≤ T , the above equation implies that P(limn→∞ xk

τn∧T = −∞) = 0.

Thus, limn→∞ τn > T with probability 1 and we have zk
t > 0 for t ∈ [0, T ].

Since yk
t → 0 almost surely as k → ∞ by virtue of (56), it follows that zt =

zk
t − yk

t ≥ 0 for any 0 ≤ t ≤ T . This gives Xi
t ≤ Y i

t for t ∈ [0, T ]. Note that
Z̃t = (Y i

t )γ is a solution to a linear stochastic differential equation with constant
coefficients and bounded initial condition, it has bounded moment of any order. In

particular, E(Y i
t )1−γ = E(Z̃t )

1−γ
γ ≤ D for some constant D for all t ∈ [0, T ].

Next, taking the expectation in both sides of the equation

Xi
T = Xi

0 +
∫ T

0

[
A(Xi

t )
1−γ − δXi

t − Ci
t

]
dt −

∫ T

0
σ Xi

t dW i
t

and using the fact that Xi
T ≥ 0, we obtain

E Xi
T = E Xi

0 +
∫ T

0

[
AE(Xi

t )
1−γ − δE Xi

t − ECi
t

]
dt ≥ 0.

Therefore,

∫ T

0
ECi

t dt ≤ E Xi
0 +

∫ T

0
AE(Xi

t )
1−γ dt ≤ D := E Xi

0 +
∫ T

0
AE(Y i

t )1−γ dt < ∞.

��
Note that as a consequence of the above lemma and Hölder’s inequality, if γ p < 1

there is a fixed constant D such that

∫ T

0
E(Ci

t )
γ pdt ≤ T 1−γ p

( ∫ T

0
E(Ci

t )dt
)γ p ≤ D (57)

for all admissible consumption processes Ci ∈ Ui .
Next, we have following estimate.

Proposition 12 Under the conditions of Theorem 9, for any q > 1 there exists a
constant D such that

E
∫ T

0

∣∣∣∣∣∣

(
C̄ (γ )

t

Ĉ (N ,γ )
t

)λ

− 1

∣∣∣∣∣∣

q

dt ≤ DN− q
2 .

Proof Let Ẑ i
t be defined as in (54). By (55), under the assumption d1 ≤ Xi

0 ≤ d2 for
i = 1, . . . , N , we can prove that E(Ẑ i

t )
p < ∞ for any real number p ∈ R. Since

X̂ i
t = (Ẑ i

t )
1/γ , Ĉi

t = bt
0(b)t X̂ i
t and D1 ≤ bt ≤ D2, it follows that E(Ĉi

t )
p < ∞

for any real number p.
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For 1 ≤ i ≤ N , denote Yi = (Ĉi
t )

γ /C̄ (γ )
t and SN = ∑N

i=1 Yi . Then Yi ≥ 0,
EYi = 1 and E |Yi |p < Dp < ∞ for any p where Dp is a constant that does not
depend on t . In addition,

C̄ (γ )
t

Ĉ (N ,γ )
t

= N

SN
. (58)

Using the inequality |aλ − 1| ≤ λ|a − 1|max{aλ−1, 1} for a = N/SN > 0, we have

∣∣∣∣∣∣

(
C̄ (γ )

t

Ĉ (N ,γ )
t

)λ

− 1

∣∣∣∣∣∣

q

=
∣∣∣∣∣
(

N

SN

)λ

− 1

∣∣∣∣∣
q

≤ λq
∣∣∣∣

N

SN
− 1

∣∣∣∣
q

max

{(
N

SN

)(λ−1)q

, 1

}

= λq
(

N

SN

)q ∣∣∣∣
SN

N
− 1

∣∣∣∣
q

max

{(
N

SN

)(λ−1)q

, 1

}
. (59)

Let p1, p2, p3 be positive numbers such that p−1
1 + p−1

2 + p−1
3 = 1, qp2 > 2 and

(1 − λ)qp3 > 1. By (59) and Hölder’s inequality, we have

E

∣∣∣∣∣∣

(
C̄ (γ )

t

Ĉ (N ,γ )
t

)λ

− 1

∣∣∣∣∣∣

q

≤ λq
[

E

(
N

SN

)qp1] 1
p1

[
E

∣∣∣∣
SN

N
− 1

∣∣∣∣
qp2] 1

p2

[
E max

{(
N

SN

)(λ−1)qp3
, 1

}] 1
p3

.

(60)

By the convexity of the function x �→ x−qp1 , x > 0, and Jensen’s inequality we
have

E

(
N

SN

)qp1
= E

(
SN

N

)−qp1
≤ 1

N

N∑
i=1

E(Yi )
−qp1 ≤ D. (61)

By a similar way with the convexity of the function x �→ x (1−λ)qp3 , x > 0, there is a
constant D independent of t such that

E max

{(
N

SN

)(λ−1)qp3
, 1

}

≤ E

[(
SN

N

)(1−λ)qp3
+ 1

]
≤ 1 + 1

N

N∑
i=1

E(Yi )
(1−λ)qp3 ≤ D. (62)
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Next, since Y1, Y2, . . . , YN are independent identically distributed random variables
with EYi = 1 for 1 ≤ i ≤ N , Mn = ∑n

i=1(Yi − 1), 1 ≤ n ≤ N is a martingale. By
Burkholder-Davis-Gundy inequality and Jensen’s inequality we have

E

∣∣∣∣
SN

N
− 1

∣∣∣∣
qp2

= N−qp2 E |MN |qp2

≤ N− qp2
2 E

[
1

N

N∑
i=1

(Yi − 1)2
] qp2

2

≤ N− qp2
2

1

N

N∑
i=1

E(Yi − 1)qp2

≤ DN− qp2
2 , (63)

where D is a constant independent of t . Combining (60)–(63), we obtain

E

∣∣∣∣∣∣

(
C̄ (γ )

t

Ĉ (N ,γ )
t

)λ

− 1

∣∣∣∣∣∣

q

≤ DN− q
2 ,

where the constant D is independent of t . By taking integration on both sides, this
completes the proof. ��
Proof of Theorem 9 Let p, q be positive numbers such that p−1 +q−1 = 1. Since the
initial condition Xi

0 is bounded, it follows from (55) that sup0≤t≤T E |Ẑ i
t |p < ∞ for

any positive number p. This leads to sup0≤t≤T E |X̂ i
t |p < ∞ and sup0≤t≤T E |Ĉi

t |p <

∞ for any positive number p. Therefore, by the boundedness of C̄t , Hölder’s inequality
and Proposition 12, we have

∣∣Ji (Ĉ
i , Ĉ−i ) − J̄i (Ĉ

i )
∣∣

=
∣∣∣∣∣E

∫ T

0

e−ρt

γ

([ (
Ĉi

t

)γ

(Ĉ (N ,γ )
t )λ

]
−

[ (
Ĉi

t

)γ

(C̄ (γ )
t )λ

])
dt

∣∣∣∣∣

≤ DE
∫ T

0
|Ĉi

t |γ
∣∣∣
( C̄ (γ )

t

Ĉ (N ,γ )
t

)λ − 1
∣∣∣dt

≤ D
[

E
∫ T

0
|Ĉi

t |pγ dt
]1/p[

E
∫ T

0

∣∣∣
(

C̄ (γ )
t

Ĉ (N ,γ )
t

)λ

− 1
∣∣∣
q
dt

]1/q

≤ DN− 1
2 .

This completes the proof. ��
Proof of Theorem 10 The first inequality is trivial. Thus, it suffices to prove the second
one. Let 1 ≤ i ≤ N and Ci

t ∈ Ui be fixed. Let Xi
t be the state of agent i corresponding
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to the consumption Ci
t . For 1 ≤ j ≤ N , let Ĉ j

t = 
1(b)t X̂ j
t be the decentralized

strategy given in Theorem 3 where X̂ j
t is the corresponding state and b is the solution

to the fixed point equation (21). Note that

Ĉ (N ,γ )
t = 1

N

N∑
i=1

(
Ĉ j

t
)γ

, C (N ,γ )
t = 1

N

∑
j 
=i

(
Ĉ j

t
)γ + 1

N

(
Ci

t

)γ
.

We write

Ji (C
i , Ĉ−i ) = E

[∫ T

0

e−ρt

γ

[ (
Ci

t

)γ

(
C̄ (γ )

t
)λ

]
dt + e−ρT η

(Xi
T )γ

γ

]

+ E
∫ T

0

e−ρt

γ

([ (
Ci

t

)γ

(
C (N ,γ )

t
)λ

]
−

[ (
Ci

t

)γ

(
Ĉ (N ,γ )

t )λ

])
dt

+ E
∫ T

0

e−ρt

γ

([ (
Ci

t

)γ

(
Ĉ (N ,γ )

t
)λ

]
−

[ (
Ci

t

)γ

(
C̄ (γ )

t
)λ

])
dt

=: J̄ (Ci ) + I i
1 + I i

2, (64)

where J̄ is calculated using the dynamics of Xi
t ,

To proceed, we observe that

(
Ĉ (N ,γ )

t

)λ −
(

C (N ,γ )
t

)λ ≤ λ

N

(
Ĉi

t

)γ
[ 1

N

∑
j 
=i

(
Ĉ j

t
)γ

]λ−1
. (65)

Indeed, this inequality holds true if
(
Ĉi

t

)γ ≤ (
Ci

t

)γ as in this case
(

Ĉ (N ,γ )
t

)λ −
(

C (N ,γ )
t

)λ ≤ 0. Next, given λ ∈ (0, 1), if
(
Ĉi

t

)γ
>

(
Ci

t

)γ , using the inequality

|aλ − bλ| ≤ λ|a − b|max{aλ−1, bλ−1} for a, b > 0, we get

(
Ĉ (N ,γ )

t

)λ −
(

C (N ,γ )
t

)λ ≤ λ
[
Ĉ (N ,γ )

t − C (N ,γ )
t

](
C (N ,γ )

t
)λ−1

≤ λ

N

[(
Ĉi

t

)γ − (
Ci

t

)γ
][ 1

N

∑
j 
=i

(
Ĉ j

t
)γ

]λ−1

≤ λ

N

(
Ĉi

t

)γ
[ 1

N

∑
j 
=i

(
Ĉ j

t
)γ

]λ−1
(66)

which implies (65). Note that in the second inequality we have used the fact that

λ − 1 < 0 and the inequality min
{

Ĉ (N ,γ )
t , C (N ,γ )

t )
}

≥ 1
N

∑
j 
=i (Ĉ

j
t )γ . Using this

inequality again we obtain
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(
Ĉ (N ,γ )

t C (N ,γ )
t

)−λ ≤
[ 1

N

∑
j 
=i

(
Ĉ j

t
)γ

]−2λ
. (67)

Next, by Jensen’s inequality for the convex function f (x) = x−λ−1, x > 0,

[ 1

N

∑
j 
=i

(
Ĉ j

t
)γ

]−λ−1 ≤ D

N − 1

∑
j 
=i

(
Ĉ j

t
)−γ (λ+1)

. (68)

Combining (65)–(68) yields

I i
1 = E

∫ T

0

e−ρt

γ

(
Ci

t

)γ
[(

Ĉ (N ,γ )
t

)λ − (
C (N ,γ )

t
)λ

](
Ĉ (N ,γ )

t C (N ,γ )
t

)−λ

dt

≤ D

N
E

∫ T

0

(
Ci

t

)γ (
Ĉi

t

)γ
[ 1

N

∑
j 
=i

(
Ĉ j

t
)γ

]−λ−1
dt

≤ D

N (N − 1)
E

∫ T

0

(
Ci

t

)γ (
Ĉi

t

)γ
[ ∑

j 
=i

(
Ĉ j

t
)−γ (λ+1)

]
dt

= D

N (N − 1)

∑
j 
=i

E
∫ T

0

(
Ci

t

)γ (
Ĉi

t

)γ (
Ĉ j

t
)−γ (λ+1)

dt.

Note that γ < 1, E(Ci
t ) < ∞ and E(Ĉi

t )
p < ∞ for any real number p. Let (p, q, r)

be positive numbers such that γ p < 1 and p−1 + q−1 + r−1 = 1. By Hölder’s
inequality, we obtain

E
∫ T

0

(
Ci

t

)γ (
Ĉi

t

)γ (
Ĉ j

t
)−γ (λ+1)

dt

≤
[ ∫ T

0
E

(
Ci

t

)γ p
dt

] 1
p
[ ∫ T

0
E

(
Ĉi

t

)γ q
dt

] 1
q
[ ∫ T

0
E

(
Ĉ j

t
)−γ (λ+1)r

dt
] 1

r

≤ D

for some constant D. Note that we have used (57) in the last inequality. This implies

I i
1 ≤ O(N−1). (69)

Next, similar to Theorem 9, we have I i
2 = O(N− 1

2 ). Thus, it follows from (64), (69)
and Theorem 9 that

sup
Ci ∈Ui

Ji (C
i , Ĉ−i ) ≤ sup

Ci
J̄i (C

i ) + O(N− 1
2 + N−1)

= J̄i (Ĉ
i ) + O(N− 1

2 )

= Ji (Ĉ
i , Ĉ−i ) + O(N− 1

2 ).
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Fig. 1 Left bt solved from the fixed point equation (21); right bt 
0(b)t
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Fig. 2 The computation of bt in the first 20 iterates by operator 


This completes the proof. ��

6 Numerical Examples

We solve the fixed equation b = 
(b) in (21) with the following parameters

T = 2, A = 1, δ = 0.05, γ = 0.6, η = 0.2, ρ = 0.04, σ = 0.08,

where λ will take three different values 0.1, 0.3, 0.5 for comparisons. The reader is
referred to [16] for typical parameter values in capital growth models with stochastic
depreciation.Time is discretizedwith step size 0.01. Fig. 1 (left) solvesb by100 iterates
of 
, and Fig. 1 (right) displays bt
0(b)t which is the gain of the state feedback policy
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Ĉi
t . It suggests that when the agent is more concerned with the relative utility (i.e.,

taking larger λ), it tends to consume with more caution during the late stage. Fig. 2
shows the iteration of b when λ = 0.5.

Note that Corollary 7 identifies a sufficient condition for 
 to be a contraction
mapping. The method there only intends to provide a qualitative result and can be
restrictive since various bound estimates obtained may be loose. Our numerical exam-
ples show satisfactory convergence to fixed points even when λ is relatively large,
indicating strong interaction of the agents. On the other hand, when we replace η by a
much smaller value (such as 0.05), it will be easier to encounter non-convergence of
the iteration with a moderate value of λ. This is expectable since a very small η causes
inadequate regularizing effect near the terminal time and consequently the agents can
behave more aggressively, making it unlikely to produce a stable interaction between
an individual and the mean field.

7 Conclusion

This paper considers continuous time stochastic growth-consumption optimization in
a mean field game setting. The individual performance is based on combining the
own utility and the relative utility with respect to the population. Our approach is to
apply mean field approximations of the population average utility to determine the
best response of a representative agent. An ε-Nash equilibrium property is proved for
the resulting set of decentralized strategies.

Acknowledgements The authors gratefully thank an anonymous referee for suggesting a simplified proof
of Proposition 12 and an improved error estimate in Theorem 10.
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