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Abstract

Mean field game (MFG) theory studies the existence of Nash equilibria, together
with the individual strategies which generate them, in games involving a large
number of asymptotically negligible agents modeled by controlled stochastic
dynamical systems. This is achieved by exploiting the relationship between the
finite and corresponding infinite limit population problems. The solution to the
infinite population problem is given by (i) the Hamilton-Jacobi-Bellman (HJB)
equation of optimal control for a generic agent and (ii) the Fokker-Planck-
Kolmogorov (FPK) equation for that agent, where these equations are linked
by the probability distribution of the state of the generic agent, otherwise known
as the system’s mean field. Moreover, (i) and (ii) have an equivalent expression
in terms of the stochastic maximum principle together with a McKean-Vlasov
stochastic differential equation, and yet a third characterization is in terms of
the so-called master equation. The article first describes problem areas which
motivate the development of MFG theory and then presents the theory’s basic
mathematical formalization. The main results of MFG theory are then presented,
namely the existence and uniqueness of infinite population Nash equilibiria,
their approximating finite population "-Nash equilibria, and the associated
best response strategies. This is followed by a presentation of the three main
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mathematical methodologies for the derivation of the principal results of the
theory. Next, the particular topics of major-minor agent MFG theory and the
common noise problem are briefly described and then the final section concisely
presents three application areas of MFG theory.
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1 Introduction

1.1 The Fundamental Idea of Mean Field Game Theory

Mean field game (MFG) theory studies the existence of Nash equilibria, together
with the individual strategies which generate them, in games involving a large
number of asymptotically negligible agents modeled by controlled stochastic
dynamical systems. This is achieved by exploiting the relationship between the finite
and corresponding infinite limit population problems. The solution to the infinite
population problem is given by (i) the Hamilton-Jacobi-Bellman (HJB) equation of
optimal control for a generic agent and (ii) the Fokker-Planck-Kolmogorov (FPK)
equation for that agent, where these equations are linked by the distribution of the
state of the generic agent, otherwise known as the system’s mean field. Moreover, (i)
and (ii) have an equivalent expression in terms of the stochastic maximum principle
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together with a McKean-Vlasov stochastic differential equation, and yet a third
characterization is in terms of the so-called master equation. An important feature
of MFG solutions is that they have fixed-point properties regarding the individual
responses to and the formation of the mean field which conceptually correspond to
equilibrium solutions of the associated games.

1.2 Background

Large population dynamical multi-agent noncooperative and cooperative phenom-
ena occur in a wide range of designed and natural settings such as communi-
cation, environmental, epidemiological, transportation, and energy systems, and
they underlie much economic and financial behavior. Here, large is taken to mean
numerically large with respect to some implied normal range or infinite (as a discrete
or uncountable set). Analysis of such systems with even a moderate number of
agents is regarded as being extremely difficult using the finite population game
theoretic methods which were developed over several decades for multi-agent
control systems (see, e.g., Basar and Ho 1974; Ho 1980; Basar and Olsder 1999; and
Bensoussan and Frehse 1984). In contrast to the dynamical system formulation of
multi-agent games, the continuum population game theoretic models of economics
(Aumann and Shapley 1974; Neyman 2002) are static, as, in general, are the large
population models employed in network games (Altman et al. 2002) and classical
transportation analysis (Correa and Stier-Moses 2010; Haurie 1985; Wardrop 1952).
However, dynamical (also termed sequential) stochastic games were analyzed in the
continuum limit in the work of Jovanovic and Rosenthal (1988) and Bergin and
Bernhardt (1992), where a form of the mean field equations can be recognized in a
discrete-time dynamic programming equation linked with an evolution equation for
the population state distribution.

Subsequently, what is now called MFG theory originated in the equations for
dynamical games with (i) large finite populations of asymptotically negligible
agents together with (ii) their infinite limits, in the work of (Huang et al. 2003,
2007), Huang et al. (2006) (where the framework was called the Nash certainty
equivalence principle; see Caines (2014)) and independently in that of Lasry and
Lions (2006a,b, 2007), where the now standard terminology of mean field games
(MFGs) was introduced. The closely related notion of oblivious equilibria for large
population dynamic games was also independently introduced by Weintraub et al.
(2005, 2008) within the framework of discrete-time Markov decision processes
(MDP).

1.3 Scope

The theory and methodology of MFG has rapidly developed since its inception
and is still advancing. Consequently, the objective of this article is only to present
the fundamental conceptual framework of MFG in the continuous time setting and
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the main techniques that are currently available. Moreover, the important topic of
numerical methods will not be included, but it is addressed elsewhere in this volume
by other contributors.

2 Problem Areas and Motivating Examples

Topics which motivate MFG theory or form potential areas of applications include
the following:

2.1 Engineering

In the domain of power grid network control, an MFG methodology is being
applied to create decentralized schemes for power network peak load reduction and
compensation of fluctuations originating in renewable sources (see Sect. 7). Vast
numbers of individual electric water-heating devices are planned to be coordinated
in a decentralized way using an MFG architecture which would limit the required
flows of information, such that individual controls give rise to a desired mean
consumption.

For cell phone communication networks where coded signals can overlap in the
frequency spectrum (called CDMA networks), a degradation of individual reception
can occur when multiple users emit in the same frequency band. Compensation
for this by users increasing their individual signal powers will shorten battery life
and is collectively self-defeating. However, in the resulting dynamic game, a Nash
equilibrium is generated when each cellular user controls its transmitted power as
specified by MFG theory (see Sect. 7). Other applications include decentralized
charging control of large populations of plug-in electric vehicles (Ma et al. 2013).

2.2 Economics and Finance

Human capital growth has been considered in an MFG setting by Guéant et al.
(2011) and Lucas and Moll (2014) where the individuals invest resources (such as
time and money) for the improvement of personal skills to better position themselves
in the labor market when competing with each other.

Chan and Sircar (2015) considered the mean field generalization of Bertrand
and Cournot games in the production of exhaustible resources where the price acts
as a medium for the producers to interact. Furthermore, an MFG formulation has
been used by Carmona et al. (2015) to address systemic risk as characterized by a
large number of banks having reached a default threshold by a given time, where
interbank loaning and lending is regarded as an instrument of control.
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2.3 Social Phenomena

Closely related to the application of MFG theory to economics and finance is its
potential application to a whole range of problems in social dynamics. As a short
list of current examples, we mention:

2.3.1 Opinion Dynamics
The evolution of the density of the opinions of a mass of agents under hypotheses
on the dynamics and stubbornness of the agents is analyzed in an MFG framework
in Bauso et al. (2016).

2.3.2 Vaccination Games
When the cost to each individual is represented as a function of (a) the risk of
side effects, (b) the benefits of being vaccinated, and (c) the proportion of the
population which is vaccinated, as in Bauch and Earn (2004), it is evident that an
MFG formulation is relevant, and this has been pursued in the work of Laguzet and
Turinici (2015).

2.3.3 Congestion Studies
MFG methodology has been employed in the study of crowds and congested flows
in Dogbé (2010) and Lachapelle and Wolfram (2011), where numerical methods
reveal the possibility of lane formation.

3 Mathematical Framework

3.1 Agent Dynamics

In MFG theory individual agents are modeled by controlled stochastic systems
which may be coupled by their dynamics, their cost functions, and their observation
functions.

The principal classes of dynamical models which are used in MFG theory are
sketched below; in all of them, the individual agent controls its own state process
(invariably denoted here by xi or x� ) and is subject to individual and possibly
common stochastic disturbances.

Concerning terminology, throughout this article, the term strategy of an agent
means the functional mapping from an agent’s information set to its control actions
over time, in other words, the control law of that agent.

3.1.1 Diffusion Models
In the diffusion-based models of large population games, the state evolution of a
collection of N agents Ai ; 1 � i � N < 1; is specified by a set of N controlled
stochastic differential equations (SDEs) which in the important linear case take the
form:
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dxi D .Aixi C Biui /dt C Cidwi ; 1 � i � N; (1)

on a finite or infinite time interval, where for the i th agent Ai , xi 2 R
n is the

state, ui 2 R
m the control input, and wi 2 R

r a standard Wiener process and where
fwi ; 1 � i � N g are independent processes. For simplicity, all collections of system
initial conditions are taken to be independent and have finite second moment.

A simplified form of the general case is given by the following set of controlled
SDEs which for each agent Ai includes state coupling with all other agents:

dxi .t/ D
1

N

NX

jD1

f .t; xi .t/; ui .t /; xj .t//dt C �dwi .t / (2)

D

Z

Rn
f .t; xi .t/; ui .t /; z/f

1

N

NX

jD1

ıxj .d z/gdt C �dwi .t /

DW f Œt; xi .t/; ui .t /; f
1

N

NX

jD1

ıxj g�dt C �dwi .t / (3)

D f Œt; xi .t/; ui .t /; �
N
t �dt C �dwi .t /; (4)

where the function f Œ�; �; �; ��, with the empirical measure of the population states
�Nt WD

1
N

PN
jD1 ıxj at the instant t as its fourth argument, is defined via

f Œt; x.t/; u.t/; �t � WD
Z

Rn
f .t; x.t/; u.t/; z/�t .d z/; (5)

for any measure flow �t , as in Cardaliaguet (2012) and Kolokoltsov et al. (2012).
For simplicity, we do not consider diffusion coefficients depending on the system
state or control.

Equation (2) is defined on a finite or infinite time interval, where, here, for the
sake of simplicity, only the uniform (i.e., nonparameterized) generic agent case is
presented. The dynamics of a generic agent in the infinite population limit of this
system is then described by the following controlled McKean-Vlasov equation

dxt D f Œxt ; ut ; �t �dt C �dwt ; 1 � i � N; 0 � t � T;

where f Œx; u; �t � D
R
R
f .x; u; y/�t .dy/, �t.�/ denotes the distribution of the state

of the generic agent at t 2 Œ0; T � and the initial condition measure �0 is specified.
(The dynamics used in Lasry and Lions (2006a,b, 2007) and Cardaliaguet (2012)
are of the form dxi .t/ D ui .t /dt C dwi .t /; where ui ; xi ;wi are scalar-valued
processes.)

It is reasonable to speculate that results described below for the case of system
dynamics driven by a Wiener process would hold in the general case of a Wiener
process plus a point process and ultimately to the general case of Lévy processes;
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indeed, in an operator framework, this generalization is carried out in the work of
Kolokoltsov et al. (see below).

3.1.2 Nonlinear Markov Processes
The mean field game dynamic modeling framework has been significantly gen-
eralized by Kolokoltsov, Li, and Wei (2012) via the introduction of controlled
nonlinear Markov processes where, in this framework, instead of diffusion SDEs,
the evolution of a typical agent is described by an integrodifferential generator of
Lévy-Khintchine type, where, as in the diffusion models described in the rest of this
paper, the coefficients of the dynamical system of each agent, and its associated
costs, are permitted to depend upon the empirical measure of the population of
agents. As a consequence, by virtue of the Markov property, game theoretic best
response problems in this framework can still be solved within the HJB formalism,
and moreover the sensitivity analysis of the controls and dynamics with respect to
perturbations in the population measure flow is facilitated.

3.1.3 Markov Chains and Other Discrete-Time Processes
The dynamical evolution of the state xi of the i th agent Ai is formulated as a
discrete-time Markov decision process (MDP). The so-called anonymous sequential
games (Bergin and Bernhardt 1992; Jovanovic and Rosenthal 1988) deal with a
continuum of agents, where a generic agent’s cost function depends on its own state
and action, and the joint state-action distribution of the agent population.

In the context of industry dynamics, Weintraub et al. (2005, 2008) adopted a large
finite population, where the dynamics may be described by a Markov transition
kernel model PtC1 WD P .xi .t C 1/jxi .t/; x�i .t /; ui .t //, where x�i denotes the
states of other players; also see Adlakha et al. (2015).

3.1.4 Finite State Models
Within continuous time modeling, Gomes et al. (2013) formulated a mean field
game of switching among finite states and determined the equilibrium by a
coupled system of ordinary differential equations. Finite state mean field games
have applications in social-economic settings and networks (Gomes et al. 2014;
Kolokoltsov and Malafeyev 2017; Kolokoltsov and Bensoussan 2016).

3.2 Agent Cost Functions

Throughout this article we shall only refer to cost functions which are the additive
(or integral) composition over a finite or infinite time interval of instantaneous
(running) costs; in MFG theory these will depend upon the individual state of an
agent along with its control and possibly a function of the states of all other agents
in the system. As usual in stochastic decision problems, the cost function for any
agent will be defined by the expectation of the integrated running costs over all
possible sample paths of the system. An important class of such functions is the
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so-called ergodic cost functions which are defined as the time average of integral
cost functions.

3.2.1 Individual Agent Performance Functions in Noncooperative
Games

The principal types of games considered in MFG theory are, first, noncooperative
games, where each agent seeks to minimize its own loss represented by its cost
function. In the most basic finite population linear-quadratic diffusion case, the
agent Ai ; 1 � i � N; possesses a cost function of the form:

JNi .ui ; u�i / D E
Z T

0

fkxi .t/ �HmN.t/k
2
Q C kui .t /k

2
Rgdt; (6)

where k�k2M denotes the squared (semi-)norm arising from the positive semi-
definite matrix M , where we assume the cost-coupling term to be of the form
mN.t/ WD xN .t/C�; � 2 R

n, where u�i denotes all agents’ control laws except for
that of the i th agent, xN denotes the population average state .1=N /

PN
iD1 xi ; and

where, here and below, the expectation is taken over an underlying sample space
which carries all initial conditions and Wiener processes.

For the nonlinear case introduced in Sect. 3.1.1, a corresponding finite population
mean field cost function is

JNi .ui ; u�i / WD E
Z T

0

�
.1=N /

NX

jD1

L.xi .t/; ui .t /; xj .t//
�
dt; 1 � i � N;

(7)
where L.�/ is the pairwise cost rate function. Setting the infinite population cost
rateLŒx; u; �t � D

R
R
L.x; u; y/�t .dy/; hence the corresponding infinite population

expected cost for a generic agent Ai is given by

Ji .ui ; �/ WD E

Z T

0

LŒx.t/; ui .t /; �t �dt; (8)

which is the general expression appearing in Huang et al. (2006) and Nourian
and Caines (2013) and which includes those of Lasry and Lions (2006a,b, 2007),
Cardaliaguet (2012). e��t discounted costs are employed for infinite time horizon
cost functions (Huang et al. 2003, 2007), while the long-run average cost is
used for ergodic MFG problems (Bardi 2012; Lasry and Lions 2006a,b, 2007;
Li and Zhang 2008).

3.2.2 Risk-Sensitive Performance Functions
This article will solely focus on additive type costs although other forms can be
adopted for the individual agents. One important such form is a risk-sensitive cost
function:
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JNi .ui ; u�i / D E expŒ
Z T

0

.1=N /

NX

jD1

L.xi .t/; ui .t /; xj .t//dt �;

which allows the use of dynamic programming to compute the best response. For
related analyses in the linear-exponential-quadratic-Gaussian (LEQG) case, see,
e.g., Tembine et al. (2014).

3.2.3 Performance Functions in Major-Minor Agent Systems
We start with the most basic finite population linear-quadratic case with a major
agent A0 having state x0 and N minor agents Ai , 1 � i � N; with states xi . The
SDEs of A0 and Ai are given by

dx0 D .A0x0 C B0u0 C F0mN /dt CD0dw0;

dxi D .Axi C Bui C FmN CGx0/dt CDdwi ; 1 � i � N;

where mN D
1
N

PN
iD1 xi and the initial states are x0.0/ and xi .0/. The major agent

has a cost function of the form:

JN0 .u0; u�0/ D E
Z T

0

fkx0.t/ �H0mN .t/k
2
Q0
C kui .t /k

2
R0
gdt;

and the minor agent Ai possesses a cost function of the form:

JNi .ui ; u�i / D E
Z T

0

fkxi .t/ �H1mN .t/ �H2x0.t/k
2
Q C kui .t /k

2
Rgdt:

Correspondingly, in the nonlinear case with a major agent, the N nonlinear
equations in (2) are generalized to include the state of a major agent described by an
additional SDE, giving a system described by N C 1 equations. The cost functions
are given by

JN0 .u0; u�0/ WD E

Z T

0

.1=N /

NX

jD1

L0.x0.t/; u0.t/; xj .t//dt;

and

JNi .ui ; u�i / WD E

Z T

0

.1=N /

NX

jD1

L.xi .t/; ui .t /; x0.t/; xj .t//dt:

Consequently, the infinite population mean field cost functions for the major and
minor agents respectively are given by
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J0.u0; �/ WD E

Z T

0

L0Œx0.t/; u0.t/; �t �dt;

and

Ji .ui ; �/ WD E

Z T

0

LŒxi .t/; ui .t /; x0.t/; �t �dt;

where L0Œx0.t/; u0.t/; �t � and LŒxi .t/; ui .t /; x0.t/; �t � correspond to their finite
population versions as in the basic minor agent only case.

3.3 Information Patterns

We now introduce the following definitions and characterizations of information
patterns in dynamic game theory which shall be used in the rest of this article.
The States of a Set of Agents: A state in dynamic games is taken to be either (i) an
individual (agent) state as defined in the Sect. 3.1, in which case it will constitute
a component of the global system state, namely, the union of the individual states,
or (ii) the global state, which is necessarily sufficient to describe the dynamical
evolution of all the agents once the system inputs are specified. We emphasize that
in this setting (see, for instance, (2)), only knowledge of the entire system state
(i.e., the union of all the individual states) plus all the system inputs would in general
permit such an extrapolation.

Moreover, in the infinite population case, the (global) system state may refer to
the statistical or probability distribution of the population of individual states, i.e.,
the mean field.
Variety of Information Patterns: Information on dynamical states: For any given
agent, this may constitute (i) the initial state, (ii) the partial past history, or (iii) the
purely current state values of either (i) that individual agent or (ii) a partial set of all
the agents or (iii) the entire set of the agents.
Open-Loop and Closed-Loop Control Laws: The common definition of an open-
loop control law for an agent is that it is solely a function of the information
set consisting of time and the initial state of that agent or of the whole system
(i.e., the global initial state). A closed-loop (i.e., feedback) control law is one which
is a function of time and the current state of that agent or the global state of the
system subject to the given information pattern constraints, where a particular case
of importance is that in which an agent’s strategy at any instant depends only upon
its current state.

A significant modification of the assertion above must be made in the classical
mean field game situation with no common noise or correlating major agent; indeed,
in that case all agents in the population will be employing an infinite population-
based Nash equilibrium strategy. As a result, the probability distribution of the
generic agent, which can be identified with the global state as defined earlier,
becomes deterministically predictable for all future times, provided it is known
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at the initial time. Consequently, for such MFGs, an adequate characterization of
sufficient information is the initial global state. Furthermore, in the MFG framework
among others, an agent lacking complete observations on its own current state may
employ recursive filtering theory to estimate its own state.
Statistical Information on the Population: For any individual agent, information
is typically available on that agent’s own dynamics (i.e., the structure and the
parameters of its own controlled dynamic system); but it is a distinct assumption
that no such information is available to it concerning other individual agents. Fur-
thermore, this information may be available in terms of a distribution (probabilistic
or otherwise) over the population of agents and not associated with any identifiable
individual agent. This is particularly the case in the MFG framework.
Who Knows What About Whom: A vital aspect of information patterns in game
theory is that knowledge concerning (i) other agents’ control actions, or, more
generally, concerning (ii) their strategies (i.e., their control laws), may or may not
be available to any given agent. This is a fundamental issue since the specification
of an agent’s information pattern in terms of knowledge of other agent’s states,
system dynamics, cost functions, and parameters leads to different possible methods
to solve for different types of equilibrium strategies and even for their existence.

In the MFG setting, if the common assumption is adopted that all agents will
compute their best response in reaction to the best responses of all other agents
(through the system dynamics), it is then optimal for each agent to solve for its
strategy through the solution of the MFG equations. The result is that each agent
will know the control strategy of every other agent, but not its control action since
the individual state of any other agent is not available to a given agent. Note however
that the state distribution of any (i.e., other generic) agent is known by any given
generic agent since this is the system’s mean field which is generated by the MFG
equations.

3.4 Solution Concepts: Equilibria and Optima

In contrast to the situation in classical stochastic control, in the game theoretic
context, the notion of an optimal level of performance and associated optimal
control for the entire system is in general not meaningful. The fundamental solution
concept is that of an equilibrium and here we principally consider the notion of a
Nash equilibrium.

3.4.1 Equilibria in Noncooperative Games: Nash Equilibria
For a set of agents Ai ; 1 � i � N < 1; let U N WD U1 � : : : � UN denote the
joint admissible strategy space, where each space Ui consists of a set of strategies
(i.e., control laws) ui which are functions of information specified for Ai via the
underlying information pattern.
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The joint strategy u , .u1; : : : ; uN / (sometimes written as fui ; 1 � i � N g)
lying in U1 � : : : � UN will constitute an input for a specific system in one of the
classes specified in Sects. 3.1 and 3.2.

The joint strategy (or control law) uı;N , fuıi ; 1 � i � N g 2 U N is said to
generate an "-Nash equilibrium, " � 0; if for each i ,

JNi .u
ı
i ; u
ı
�i / � " � inf

ui2Ui

J Ni .ui ; u
ı
�i / � J

N
i .u

ı
i ; u
ı
�i /: (9)

In case " D 0, the equilibrium is called a Nash equilibrium.
This celebrated concept has the evident interpretation that when all agents except

agent Ai employ a set of control laws fuıj ; j ¤ i; 1 � j � N g, any deviation by
Ai from uıi can yield a cost reduction of at most ".

In the MFG framework, in its basic noncooperative formulation, the objective of
each agent is to find strategies (i.e., control laws) which are compatible with respect
to the information pattern and other dynamical constraints and which minimize its
individual performance function. Consequently the resulting problem is necessarily
game theoretic and the central results of the topic concern the existence of Nash
Equilibria and their properties.

For a system of N players, under the hypothesis of closed-loop state information
(see Sect. 3.3), we shall define the set of value functions fVi .t; x/; 1 � i � N; g in a
Nash equilibrium, as the set of costs of N agent Ai ; 1 � i � N; with respect to the
time and global state pair .t; x/. The set of value functions and its existence may be
characterized by a set of coupled HJB equations.

Under closed-loop information, the Nash equilibrium, if it exists, is sub-game
perfect in the sense that by restricting to any remaining period of the original game,
the set of strategies is still a Nash equilibrium for the resulting sub-game. In this
case, the strategy of each agent is determined as a function of time and the current
states of the agents and is usually called a Markov strategy.

3.4.2 Pareto Optima
A set of strategies yields a Pareto optimum if a change of strategies which strictly
decreases the cost incurred by one agent strictly increases the cost incurred by at
least one other agent.

3.4.3 Social Optima and Welfare Optimization
Within the framework of this article, a social cost or (negative) welfare function
is defined as the sum of the individual cost functions of a set of agents (Huang
et al. 2012). As a result a cooperative game may be defined which consists of the
agents minimizing the social cost as a cooperative optimal control problem, where
the individual strategies will depend upon the information pattern. We observe that
a social optimum is necessarily a Pareto optimum with respect to the vector of
individual costs since otherwise at least one summand of the social cost function
may be strictly reduced without any other agent’s cost increasing. The so-called
person-by-person optimality is the property that at the social optimum, the strategy
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change of any single agent can yield no improvement of the social cost and so
provides a useful necessary condition for social optimality. The exact solution of
this problem in general requires a centralized information pattern.

3.4.4 Team Optima
Team problems are distinguished from cooperative game problems by the fact that
only one cost function is defined a priori for the entire set of agents while they
have access to different sets of information. A necessary condition for a solution
to be team optimal is that the person-by-person optimality condition is satisfied
(Ho 1980). Team problems do not in general reduce to single agent optimum
problems due to the variety of information patterns that are possible for the set of
agents.

3.4.5 Mean Field Type Control Optimality
Mean field type control deals with optimal control problems where the mean
field of the state process either is involved in the cost functional in a nonlinear
manner, such as being associated with the variance of the state, or appears in
the system dynamics, or both, and is a function of the single agent’s control.
Unlike standard stochastic optimal control problems, mean field type control
problems do not possess an iterated expectation structure due to the mean field
term (i.e., there is time inconsistency), which excludes the direct (i.e., without
state extension) application of dynamic programming. In this case, the stochastic
maximum principle is an effective tool for characterizing the optimal control; see
Andersson and Djehiche (2011) and the monograph of Bensoussan et al. (2013).
Carmona et al. (2013) considered a closely related problem termed the control
of McKean-Vlasov dynamics. Mean field games dealing with mean field type
dynamics and costs and addressing time consistency are considered by Djehiche
and Huang (2016).

4 Analytic Methods: Existence and Uniqueness
of Equilibria

The objective of each agent in the classes of games under consideration is to find
strategies which are admissible with respect to the given dynamic and information
constraints and which achieve one of corresponding types of equilibria or optima
described in the previous section. In this section we present some of the main
analytic methods for establishing the existence, uniqueness, and the nature of the
related control laws and their equilibria.

The fundamental feature of MFG theory is the relation between the game
theoretic behavior (assumed here to be noncooperative) of finite populations of
agents and the infinite population behavior characterized by a small number of
equations in the form of PDEs or SDEs.
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4.1 Linear-Quadratic Systems

The basic mean field problem in the linear-quadratic case has an explicit solution
characterizing a Nash equilibrium (see Huang et al. 2003, 2007). Consider the scalar
infinite time horizon discounted case, with nonuniform parameterized agents A�

(representing a generic agent Ai taking parameter � ) with parameter distribution
F .�/; � 2 ‚ and system parameters identified as A� D a� ; B� D b� ;Q WD 1;

R D r > 0, H D 	 ; the extension to the vector case and more general parameter
dependence on � is straightforward. The so-called Nash certainty equivalence
(NCE) scheme generating the equilibrium solution takes the form:

�s� D
ds�

dt
C a�s� �

b2�
r
…�s� � x

�; (10)

dx�

dt
D .a� �

b2�
r
…�/x� �

b2�
r
s� ; 0 � t <1; (11)

x.t/ D

Z

‚

x�.t/dF .�/; (12)

x�.t/ D 	.x.t/C �/; (13)

�…� D 2a�…� �
b2�
r
…2
� C 1; …� > 0; Riccati Equation (14)

where the control law of the generic parameterized agent A� has been substituted
into the system equation (1) and is given by u0� .t/ D �

b�
r
.…�x� .t/ C s� .t//;

0 � t < 1: u0� is the optimal tracking feedback law with respect to x�.t/ which
is an affine function of the mean field term x.t/; the average with respect to the
parameter distribution F of the � 2 ‚ parameterized state means x�.t/ of the
agents. Subject to the conditions for the NCE scheme to have a solution, each agent
is necessarily in a Nash equilibrium with respect to all full information causal (i.e.,
non-anticipative) feedback laws with respect to the remainder of agents when these
are employing the law u0� associated with their own parameter.

It is an important feature of the best response control law u0� that its form depends
only on the parametric distribution F of the entire set of agents, and at any instant it
is a feedback function of only the state of the agent A� itself and the deterministic
mean field-dependent offset s� , and is thus decentralized.

4.2 Nonlinear Systems

For the general nonlinear case, the MFG equations on Œ0; T � are given by the linked
equations for (i) the value function V for each agent in the continuum, (ii) the FPK
equation for the SDE for that agent, and (iii) the specification of the best response
feedback law depending on the mean field measure �t and the agent’s state x.t/: In
the uniform agent scalar case, these take the following form:
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The mean field game HJB-FPK equations are as follows:

[HJB] �
@V .t; x/

@t
D inf

u2U

�
f Œx; u; �t �

@V .t; x/

@x
C LŒx; u; �t �

�
C
�2

2

@2V .t; x/

@x2

(15)

V .T; x/ D 0;

[FPK]
@p�.t; x/

@t
D �

@ff Œx; uı.t; x/; �t �p�.t; x/g

@x
C
�2

2

@2p�.t; x/

@x2
(16)

.t; x/ 2 Œ0; T � � R

p�.0; x/ D p�0.x/;

[BR] uı.t; x/ D '.t; xj�t/; (17)

where p�.t; �/ is the density of the measure �t , which is assumed to exist, and the
function '.t; xj�t/ is the infimizer in the HJB equation. The .t; x; �t /-dependent
feedback control gives an optimal control (also known as a best response (BR)
strategy) for the generic individual agent with respect to the infinite population-
dependent performance function (8) (where the infinite population is represented by
the generic agent measure �).

By the very definition of the solution to FPK equations, the solution � above will
be the state distribution in the process distribution solution pair .x; �/ in

[SDE] dxt D f Œxt ; u
ı
t ; �t �dt C �dwt ; 1 � i � N; 0 � t � T: (18)

This equivalence of the controlled sample path pair .x; �/ solution to the SDE
and the corresponding FPK PDE is very important from the point of view of
the existence, uniqueness, and game theoretic interpretation of the solution to the
system’s equation.

A solution to the mean field game equations above may be regarded as an
equilibrium solution for an infinite population game in the sense that each BR
feedback control (generated by the HJB equation) enters an FPK equation – and
hence the corresponding SDE – and so generates a pair .x; �/, where each generic
agent in the infinite population with state distribution� solves the same optimization
problem and hence regenerates �.

In this subsection we briefly review the main methods which are currently
available to establish the existence and uniqueness of solutions to various sets of
MFG equations. In certain cases the methods are based upon iterative techniques
which converge subject to various well-defined conditions. The key feature of the
methods is that they yield individual state and mean field-dependent feedback
control laws generating "-Nash equilibria together with an upper bound on the
approximation error.

The general nonlinear MFG problem is approached by different routes in the
basic sets of papers Huang et al. (2007, 2006), Nourian and Caines (2013), Carmona
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and Delarue (2013) on one hand, and Lasry and Lions (2006a,b, 2007), Cardaliaguet
(2012), Cardaliaguet et al. (2015), Fischer (2014), Carmona and Delarue (2014)
on the other. Roughly speaking, the first set uses an infinite to finite population
approach (to be called the top-down approach) where the infinite population game
equations are first analyzed by fixed-point methods and then "-Nash equilibrium
results are obtained for finite populations by an approximation analysis, while the
latter set analyzes the Nash equilibria of the finite population games, with each agent
using only individual state feedback, and then proceeds to the infinite population
limit (to be called the bottom-up approach).

4.3 PDE Methods and the Master Equation

In Lasry and Lions (2006a,b, 2007), it is proposed to obtain the MFG equation
system by a finite N agent to infinite agent (or bottom-up) technique of solving
a sequence of games with an increasing number of agents. Each solution would
then give a Nash equilibrium for the corresponding finite population game. In
this framework there are then two fundamental problems to be tackled: first, the
proof of the convergence, in an appropriate sense, of the finite population Nash
equilibrium solutions to limits which satisfy the infinite population MFG equations
and, second, the demonstration of the existence and uniqueness of solutions to the
MFG equations.

In the expository notes of Cardaliaguet (2012), the analytic properties of
solutions to the infinite population HJB-FPK PDEs of MFG theory are established
for finite time horizon using PDE methods including Schauder fixed-point theory
and the theory of viscosity solutions. The relation to finite population games is then
derived, that is to say an "-Nash equilibrium result is established, predicated upon
the assumption of strictly individual state feedback for the agents in the sequence
of finite games. We observe that the analyses in both cases above will be strongly
dependent upon the hypotheses concerning the functional form of the controlled
dynamics of the individual agents and their cost functions, each of which may
possibly depend upon the mean field measure.

4.3.1 Basic PDE Formulation
In the exposition of the basic analytic MFG theory (Cardaliaguet 2012), agents have
the simple dynamics:

dxit D uit dt C
p
2dwit (19)

and the cost function of agent i is given in the form:

JNi .ui ; u�i / D E
Z T

0

�
1

2
.uit /

2 C F .xit ; �
N;�i
t /

�
dt CEG.xit ; �

N;�i
t /;
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where �N;�it is the empirical distribution of the states of all other agents. This leads
to MFG equations in the simple form:

� @tV �
V C
1

2
jDV j2 D F .x;m/; .x; t/ 2 R

d � .0; T / (20)

@tm �
m � div.mDV / D 0; (21)

m.0/ D m0; V .x; T / D G.x;m.T //; x 2 R
d ; (22)

where V .t; x/ and m.t; x/ are the value function and the density of the state
distribution, respectively.

The first step is to consider the HJB equation with some fixed measure �; it
is shown by use of the Hopf-Cole transform that a unique Lipschitz continuous
solution v to the new HJB equation exists for which a certain number of derivatives
are Hölder continuous in space and time and for which the gradient Dv is bounded
over Rn.

The second step is to show that the FPK equation with DV appearing in the
divergence term has a unique solution function which is as smooth as V . Moreover,
as a time-dependent measure, m is Hölder continuous with exponent 1

2
with respect

to the Kantorovich-Rubinstein (KR) metric.
Third, the resulting mapping of � to V and thence to m, denoted ‰, is such that

‰ is a continuous map from the (KR) bounded and complete space of measures
with finite second moment (hence a compact space) into the same. It follows
from Schauder fixed-point theorem that ‰ has a fixed point, which consequently
constitutes a solution to the MFG equations with the properties listed above.

The fourth and final step is to show that the Lasry-Lions monotonicity condition
(a form of strict passivity condition) on F

Z

Rd

F .x;m1/ � F .x;m2/d.m1 �m2/ > 0; 8m1 ¤ m2;

combined with a similar condition for G allowing for equality implies the unique-
ness of the solution to the MFG equations.

Within the PDE setting, in-depth regularity investigation of the HJB-FPK
equation under different growth and convexity conditions on the Hamiltonian have
been developed by Gomes and Saude (2014).

4.3.2 General Theory: The Master Equation Method
The master equation formulation was initially introduced by P-L Lions and has
been investigated by various researchers (Bensoussan et al. 2013; Cardaliaguet et al.
2015; Carmona and Delarue 2014).

The program of working from the finite population game equations and their
solution to the infinite population MFG equations and their solution has been carried
out in Cardaliaguet et al. (2015) for a class of systems with simple dynamics but
which, in an extension of the standard MFG theory, include a noise process common
to all agents in addition to their individual system noise processes. The basic idea
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is to reinterpret the value function of a typical player in a game of N players as
a function U.t; xi ; m/ of time, its own state, and the empirical distribution of the
states of all other players.

The analysis using the master equation begins with a set of equations which may
be interpreted as the dynamic programming equations for the population. Further-
more, the information set permitted for this optimization is the full N agent system
state. The derivation of the master equation is carried out (on an appropriately
dimensioned torus) by arguing that the value function of a representative agent i ,
from a population of N , is a function of time, its own state, and a measure formed
by N � 1 particle states and by taking the limit when N ! 1. In the end, the
state space for the master equation is the joint space of a generic agent state and a
probability distribution.

The main result of the extensive analysis in Cardaliaguet et al. (2015) is the
convergence of the set of Nash value functions V N

i .t0; x/; 1 � i � N , of the set
of agents for the population of size N , with initial condition x D .x1; : : : ; xN / at
time t0, to the set of corresponding infinite population value functions U (given as
solutions to the master equation), evaluated at the corresponding initial state xi and
the empirical measure mN

x . This convergence is in the average sense

1

N
†jV N

i .t0; x/ � U.t0; xi ; m
N
x /j ! 0; as N !1:

In Bensoussan et al. (2015), following the derivation of the master equation for
mean field type control, the authors apply the standard approach of introducing
the system of HJB-FPK equations as an equilibrium solution, and then the Master
equation is obtained by decoupling the HJB equation from the Fokker-Planck-
Kolmogorov equation. Carmona and Delarue (2014) take a different route by
deriving the master equation from a common optimality principle of dynamic
programming with constraints. Gangbo and Swiech (2015) analyze the existence
and smoothness of the solution for a first-order master equation which corresponds
to a mean field game without involving Wiener processes.

4.4 The Hybrid Approach: PDEs and SDEs, from Infinite to Finite
Populations

The infinite to finite route is top-down: one does not solve the game of N agents
directly. The solution procedure involves four steps. First, one passes directly to
the infinite population situation and formulates the dynamical equation and cost
function for a single agent interacting with an infinite population possessing a
fixed state distribution �. Second, the stochastic optimization problem for that
generic agent is then solved via dynamic programming using the HJB equation
and the resulting measure for the optimally controlled agent is generated via the
agent’s SDE or equivalently FPK equation. Third, one solves the resulting fixed-
point problem by the use of various methods (e.g., by employing the Banach,
Schauder, or Kakutani fixed-point theorems). Finally, fourth, it is shown that the
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infinite population Nash equilibrium control laws are "-Nash equilibrium for finite
populations. This formulation was introduced in the sequence of papers Huang
et al. (2003, 2006, 2007) and used in Nourian and Caines (2013), Sen and Caines
(2016); it corresponds to the “limit first” method employed by Carmona, Delarue,
and Lachapelle (2013) for mean field games.

Specifically, subject to Lipschitz and differentiability conditions on the dynam-
ical and cost functions, and adopting a contraction argument methodology, one
establishes the existence of a solution to the HJB-FPK equations via the Banach
fixed-point theorem; the best response control laws obtained from these MFG
equations are necessarily Nash equilibria within all causal feedback laws for the
infinite population problem. Since the limiting distribution is equal to the original
measure �, a fixed point is obtained; in other words a consistency condition is
satisfied. By construction this must be (i) a self-sustaining population distribution
when all agents in the infinite population apply the corresponding feedback law,
and (ii) by its construction via the HJB equation, it must be a Nash equilibrium for
the infinite population. The resulting equilibrium distribution of a generic agent is
called the mean field of the system.

The infinite population solution is then related to the finite population behavior
by an "-Nash equilibrium theorem which states that the cost of any agent can be
reduced by at most " when it changes from the infinite population feedback law
to another while all other agents stick to their infinite population-based control
strategies. Specifically, it is then shown (Huang et al. 2006) that the set of strategies
fuıi .t / D 'i .t; xi .t/j�t/; 1 � i � N g yields an "-Nash equilibrium for all ", i.e.,
for all " > 0, there exists N."/ such that for all N � N."/

J Ni .u
ı
i ; u
ı
�i / � " � inf

ui2Ui

J Ni .ui ; u
ı
�i / � J

N
i .u

ı
i ; u
ı
�i /: (23)

4.5 The Probabilistic Approach

4.5.1 Maximum Principle Solutions Within the Probabilistic
Formulation

A different solution framework for the mean field game with nonlinear diffusion
dynamics is to take a stochastic maximum principle approach (Carmona and
Delarue 2013) for determining the best response of a representative agent. The
procedure is carried out in the following steps: (i) A measure flow�t is introduced to
specify the empirical state distribution associated with an infinite population. (ii) An
optimal control problem is solved for that agent by introducing an adjoint process,
which then determines the closed-loop system. (iii) The measure flow �t is then
required to be equal to the law of the closed-loop state processes. This procedure
yields a McKean-Vlasov forward-backward stochastic differential equation.

Necessary and sufficient conditions are available to establish the validity of
the stochastic maximum (SM) principle approach to MFG theory. In particular,
convexity conditions on the dynamics and the cost function, with respect to the
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state and controls, may be taken as sufficient conditions for the main results
characterizing an MFG equilibrium through the solution of the forward-backward
stochastic differential equations (FBSDEs), where the forward equation is that of
the optimally controlled state dynamics and the backward equation is that of the
adjoint process generating the optimal control, where these are linked by the mean
field measure process. Furthermore the Lasry-Lions monotonicity condition on the
cost function with respect to the mean field forms the principal hypothesis yielding
the uniqueness of the solutions.

4.5.2 Weak Solutions Within the Probabilistic Formulation
Under a weak formulation of mean field games (Carmona and Lacker 2015),
the stochastic differential equation in the associated optimal control problem is
interpreted according to a weak solution. This route is closely related to the weak
formulation of stochastic optimal control problems, also known as the martingale
approach.

The solution of the mean field game starts by fixing a mean field, as a measure
to describe the effect of an infinite number of agents, and a nominal measure for the
probability space. Girsanov’s transformation is then used to define a new probability
measure under which one determines a diffusion process with a controlled drift and
a diffusion term. Subsequently, the optimal control problem is solved under this new
measure. Finally the consistency condition is introduced such that the distribution
of the closed-loop state process agrees with the mean field. Hence the existence and
uniqueness of solutions to the MFG equations under the specified conditions are
obtained for weak solutions.

The proof of existence under the weak formulation relies on techniques in set-
valued analysis and a generalized version of Kakutani’s theorem.

4.6 MFG Equilibrium Theory Within the Nonlinear Markov
Framework

The mean field game dynamic modeling framework is significantly generalized
by Kolokoltsov, Li, and Wei (2012) via the introduction of controlled nonlinear
Markov processes where, instead of diffusion SDEs, the evolution of a typical
agent is described by an integrodifferential generator of Levy-Khintchine type; as
a consequence, by virtue of the Markov property, optimal control problems in this
framework can still be solved within the HJB formalism.

Similar to the diffusion models described in the rest of this paper, the coefficients
of the dynamical system of each agent, and its associated costs, are permitted to
depend upon the empirical measure of the population of agents.

In the formal analysis, again similar to the procedures in the rest of the paper
(except for Cardaliaguet et al. 2015), this measure flow is initially fixed at the
infinite population limit measure and the agents then optimize their behavior via
the corresponding HJB equations.
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Finally, invoking the standard consistency requirement of mean field games, the
MFG equations are obtained when the probability law of the resulting closed-loop
configuration state is set equal to the infinite population distribution (i.e., the limit
of the empirical distributions).

Concerning the methods used by Kolokoltsov, Li, and Wei (2012), we observe
that there are two methodologies which are employed to ensure the existence
of solutions to the kinetic equations (corresponding to the FPK equations in
this generalized setup) and the HJB equations: First, (i) the continuity of the
mapping from the population measure to the measure generated by the kinetic (i.e.,
generalized FPK) equations is proven, and (ii) the compactness of the space of
measures is established; then (i) and (ii) yield the existence (but not necessarily
uniqueness) of a solution measure corresponding to any fixed control law via the
Schauder fixed-point theory. Second, an estimate of the sensitivity of the best
response mapping (i.e., control law) with respect to an a priori fixed measure flow
is proven by an application of the Duhamel principle to the HJB equation. This
analysis provides the ingredients which are then used for an existence theory for the
solutions to the joint FPK-HJB equations of the MFG. Within this framework an
"-Nash equilibrium theory is then established in a straightforward manner.

5 Major and Minor Agents

The basic structure of mean field games can be remarkably enriched by introducing
one or more major agents to interact with a large number of minor agents. A major
agent has significant influence, while a minor agent has negligibly small influence
on others. Such a differentiation of the strength of agents is well motivated by many
practical decision situations, such as a sector consisting of a dominant corporation
and many much smaller firms, the financial market with institutional traders and a
huge number of small traders. The traditional game theoretic literature has studied
such models of mixed populations and coined the name mixed games, but this is
only in the context of static cooperative games (Haimanko 2000; Hart 1973; Milnor
and Shapley 1978).

Huang (2010) introduced a large population LQG game model with mean field
couplings which involves a large number of minor agents and also a major agent.
A distinctive feature of the mixed agent MFG problem is that even asymptotically
(as the population size N approaches infinity), the noise process of the major agent
causes random fluctuation of the mean field behavior of the minor agents. This is
in contrast to the situation in the standard MFG models with only minor agents. A
state-space augmentation approach for the approximation of the mean field behavior
of the minor agents is taken in order to Markovianize the problem and hence to
obtain "-Nash equilibrium strategies. The solution of the mean field game reduces
to two local optimal control problems, one for the major agent and the other for a
representative minor agent.

Nourian and Caines (2013) extend the LQG model for major and minor (MM)
agents (Huang 2010) to the case of a nonlinear MFG systems. The solution to the
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mean field game problem is decomposed into two nonstandard nonlinear stochastic
optimal control problems (SOCPs) with random coefficient processes which yield
forward adapted stochastic best response control processes determined from the
solution of (backward in time) stochastic Hamilton-Jacobi-Bellman (SHJB) equa-
tions. A core idea of the solution is the specification of the conditional distribution of
the minor agent’s state given the sample path information of the major agent’s noise
process. The study of mean field games with major-minor agents and nonlinear
diffusion dynamics has also been developed in Carmona and Zhu (2016) and
Bensoussan et al. (2013) which rely on the machinery of FBSDEs.

An extension of the model in Huang (2010) to the systems of agents with Markov
jump parameters in their dynamics and random parameters in their cost functions is
studied in Wang and Zhang (2012) for a discrete-time setting.

In MFG problems with purely minor agents, the mean field is deterministic, and
this obviates the need for observations on other agents’ states so as to determine the
mean field. However, a new situation arises for systems with a major agent whose
state is partially observed; in this case, best response controls generating equilibria
exist which depend upon estimates of the major agent’s state (Sen and Caines 2016;
Caines and Kizilkale 2017).

6 The Common Noise Problem

An extension of the basic MFG system model occurs when what is called common
noise is present in the global system, that is to say there is a common Wiener process
whose increments appear on the right-hand side of the SDEs of every agent in the
system (Ahuja 2016; Bensoussan et al. 2015; Cardaliaguet et al. 2015; Carmona and
Delarue 2014). Clearly this implies that asymptotically in the population size, the
individual agents cannot be independent even when each is using local state plus
mean field control (which would give rise to independence in the standard case).
The study of this case is well motivated by applications such as economics, finance,
and, for instance, the presence of common climatic conditions in renewable resource
power systems.

There are at least two approaches to this problem. First it may be treated
explicitly in an extension of the master equation formulation of the MFG equations
as indicated above in Sect. 4 and, second, common noise may be taken to be the state
process of a passive (that is to say uncontrolled) major agent whose state process
enters each agent’s dynamical equation (as in Sect. 3.2.3).

This second approach is significantly more general than the former since (i) the
state process of a major agent will typically have nontrivial dynamics, and (ii) the
state of the major agent typically enters the cost function of each agent, which is
not the case in the simplest common noise problem. An important difference in
these treatments is that in the common noise framework, the control of each agent
will be a function of (i.e., it is measurable with respect to) its own Wiener process
and the common noise, while in the second formulation each minor agent can have



Mean Field Games 23

complete, partial, or no observations on the state of the major agent which in this
case is the common noise.

7 Applications of MFG Theory

As indicated in the Introduction, a key feature of MFG theory is the vast scope of its
potential applications of which the following is a sample: Smart grid applications: (i)
Dispersed residential energy storage coordinated as a virtual battery for smoothing
intermittent renewable sources (Kizilkale and Malhamé 2016); (ii) The recharging
control of large populations of plug-in electric vehicles for minimizing system
electricity peaks (Ma et al. 2013). Communication systems: (i) Power control in
cellular networks to maintain information throughput subject to interference (Aziz
and Caines 2017); (ii) Optimization of frequency spectrum utilization in cognitive
wireless networks; (iii) Decentralized control for energy conservation in ad hoc
environmental sensor networks. Collective dynamics: (i) Crowd dynamics with
xenophobia developing between two groups (Lachapelle and Wolfram 2011) and
collective choice models (Salhab et al. 2015); (ii) Synchronization of coupled oscil-
lators (Yin et al. 2012). Public health models: Mean field game-based anticipation
of individual vaccination strategies (Laguzet and Turinici 2015).

For lack of space and in what follows, we further detail only three examples,
respectively, drawn among smart grid applications, communication system applica-
tions, and economic applications as follows.

7.1 Residential Power Storage Control for Integration of
Renewables

The general objective in this work is to coordinate the loads of potentially millions
of dispersed residential energy devices capable of storage, such as electric space
heaters, air conditioners, or electric water heaters; these will act as a virtual battery
whose storage potential is directed at mitigating the potentially destabilizing effect
of the high power system penetration of renewable intermittent energy sources
(e.g., solar and wind). A macroscopic level model produces tracking targets for
the mean temperature of the controlled loads, and then an application of MFG
theory generates microscopic device level decentralized control laws (Kizilkale and
Malhamé 2016).

A scalar linear diffusion model with state xi is used to characterize individual
heated space dynamics and includes user activity-generated noise and a heating
source. A quadratic cost function is associated with each device which is designed
so that (i) pressure is exerted so that devices drift toward z which is set either to
their maximum acceptable comfort temperatureH if extra energy storage is desired
or to their minimum acceptable comfort temperature L < H if load deferral is
desired and (ii) average control effort and temperature excursions away from initial
temperature are penalized. This leads to the cost function:
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E

Z 1

0

e�ıt Œqt .xi � z/2 C qx0.xi � xi .0//
2 C ru2i �dt; (24)

where qt D �j
R t
0
. Nx.�/� y/d� j, Nx is the population average state with L < Nx.0/ <

H , and L < y < H is the population target. In the design the parameter � > 0 is
adjusted to a suitable level so as to generate a stable population behavior.

7.2 Communication Networks

The so-called CDMA communication networks are such that cell phone signals
can interfere by overlapping in the frequency spectrum causing a degradation of
individual signal to noise ratios and hence the quality of service. In a basic version
of the standard model there are two state variables for each agent: the transmitted
power p 2 RC and channel attenuation ˇ 2 R. Conventional power control
algorithms in mobile devices use gradient-type algorithms with bounded step size
for the transmitted power which may be represented by the so-called rate adjustment
model: dpi D uipdt C �

i
pdW

i
p , uip � jumaxj; 1 � i � N , where N represents the

number of the users in the network, and W i
p , 1 � i � N , independent standard

Wiener processes. Further, a standard model for time-varying channel attenuation
is the lognormal model, where the channel gain for the i th agent with respect to
the base station is given by eˇ

i .t/ at the instant t , 0 � t � T and the received
power at the base station from the i the agent is given by the product eˇ

i
� pi .

The channel state, ˇi .t/, evolves according to the power attenuation dynamics:
dˇi D �ai .ˇi C bi /dt C �iˇdW i

ˇ ; t � 0; 1 � i � N . For the generic agent
Ai in the infinite user’s case, the cost function Li.ˇi ; pi / is given by

lim
N!1

E

"Z T

0

(
�

eˇ
i
pi

1
N

Pn
jD1 p

j eˇ
j
C �
C pi

)
dt

#

D

Z T

0

(
�

eˇ
i
piR

ˇ�p
eˇp�t .ˇ; p/dˇdp C �

C pi

)
dt;

where �t denotes the system mean field. As a result, the power control problem may
be formulated as a dynamic game between the cellular users whereby each agent’s
cost function Li.ˇ; p/ involves both its individual transmitted power and its signal
to noise ratio. The application of MFG theory yields a Nash equilibrium together
with the control laws generated by the system’s MFG equations (Aziz and Caines
2017). Due to the low dimension of the system state in this formulation, and indeed
in that with mobile agents in a planar zone, the MFG PDEs can be solved efficiently.
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7.3 Stochastic Growth Models

The model described below is a large population version of the so-called capital
accumulation games (Amir 1996). Consider N agents (as economic entities). The
capital stock of agent i is xit and modeled by

dxit D
�
A.xit /

˛ � ıxit
	
dt � C i

t dt � �x
i
t dwit ; t � 0; (25)

where A > 0, 0 < ˛ < 1, xi0 > 0, fwit ; 1 � i � N g are i.i.d. standard Wiener
processes. The function F .x/ WD Ax˛ is the Cobb-Douglas production function
with capital x and a constant labor size; .ıdt C �dwit / is the stochastic capital
depreciation rate; and Ct is the consumption rate.

The utility functional of agent i takes the form:

Ji .C
1; : : : ; CN / D E

�Z T

0

e��tU .C i
t ; C

.N;	/
t /dt C e��T S.XT /

�
; (26)

where C .N;	/
t D 1

N

PN
iD1.C

i
t /
	 is the population average utility from consumption.

The motivation of taking the utility function U.C i
t ; C

.N;	/
t / is based on relative

performance. We take 	 2 .0; 1/ and the utility function (Huang and Nguyen 2016):

U.C i
t ; C

.N;	/
t / D

1

	
.C i

t /
	.1��/

 
.C i

t /
	

C
.N;	/
t

!�
; � 2 Œ0; 1�: (27)

So U.C i
t ; C

.N;	/
t / may be viewed as a weighted geometric mean of the own utility

U0 D .C i
t /
	=	 and the relative utility U1 D .C i

t /
	=.	C

.N;	/
t /. For a given � ,

U.c; �/ is a hyperbolic absolute risk aversion (HARA) utility since U.c; �/ D c	

	��
;

where 1 � 	 is usually called the relative risk aversion coefficient. We further take
S.x/ D �x	

	
, where � > 0 is a constant.

Concerning growth theory in economics, human capital growth has been consid-
ered in an MFG setting by Lucas and Moll (2014) and Guéant et al. (2011) where
the individuals invest resources (such as time and money) for the improvement of
personal skills to better position themselves in the labor market when competing
with each other (Guéant et al. 2011).
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