Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. FolgeA Series of Modern Surveys in Mathematics 66

Luis Ribes

Profinite Graphs and Groups

Ergebnisse der Mathematik und ihrer Grenzgebiete

Volume 66

3. Folge

A Series of Modern Surveys in Mathematics

Editorial Board

L. Ambrosio, Pisa V. Baladi, Paris G.-M. Greuel, Kaiserslautern M. Gromov, Bures-sur-Yvette G. Huisken, Tübingen J. Jost, Leipzig J. Kollár, Princeton G. Laumon, Orsay U. Tillmann, Oxford J. Tits, Paris D.B. Zagier, Bonn

Luis Ribes

Profinite Graphs and Groups

Luis Ribes School of Mathematics and Statistics Carleton University Ottawa, ON, Canada

ISSN 0071-1136 ISSN 2197-5655 (electronic) Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

ISBN 978-3-319-61041-2

ISBN 978-3-319-61199-0 (eBook)

DOI 10.1007/978-3-319-61199-0

Library of Congress Control Number: 2017952053

Mathematics Subject Classification: 20E18, 20E06, 20E08, 20F65, 20J05, 05C05, 20M35, 22C05

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Para Fabián

Para Luisito y Tomasín

Preface

Profinite groups are Galois groups, which we view as topological groups. In this book the theory of profinite graphs is developed as a natural tool in the study of some aspects of profinite and abstract groups. Our approach is modelled on the by now classical Bass–Serre theory of abstract groups acting on abstract trees as it appears in J.-P. Serre's monograph 'Trees'.

We think of a graph Γ as the union of its sets of vertices V and edges E. A graph Γ is profinite if it is endowed with a profinite topology (i.e., a compact, Hausdorff and totally disconnected topology), in such a way that the functions defining the origin and terminal points are continuous. A natural example of a profinite graph is the Cayley graph $\Gamma(G,X)$ of a profinite group G with respect to a closed subset X, say finite, of G: the vertices of Γ are the elements of G, and its directed edges have the form (g,x) ($g \in G, x \in X$) with origin $d_0(g,x) = g$ and terminal $d_1(g,x) = gx$. Then the topology of G naturally induces a profinite topology on $\Gamma(G,X)$.

Part I of this book contains an exposition of the theory of profinite graphs and how it relates to and is motivated by the theory of profinite groups. Part II deals with applications to profinite groups, while Part III is dedicated to the study of certain properties of abstract groups with the help of tools developed in Parts I and II.

Our aim in Parts I and II has been to make the exposition self-contained, and familiarity with the theory of abstract graphs and groups is not strictly necessary. However, knowledge of the Bass–Serre theory certainly helps, and throughout these two parts we often indicate the interconnections. These connections are in fact the main tools for some of the applications to abstract groups in Part III, where results and ideas ranging from topology and abstract group theory to automata theory are used freely.

One fundamental difference with the abstract case is that a profinite group acting freely on a profinite tree need not be a free profinite group (it is just projective). This leads to a study of Galois coverings of profinite graphs and fundamental groups of profinite graphs. Throughout the book we have tried to be as general as reasonably possible, and so we consider pro- \mathcal{C} groups, where \mathcal{C} is a class of finite groups, rather than profinite groups in general. Consequently the book includes studies of Galois \mathcal{C} -coverings, \mathcal{C} -trees, fundamental groups of graphs of pro- \mathcal{C} groups, etc.

viii Preface

Part I (Chaps. 2–6) includes the development of free products of pro- \mathcal{C} groups continuously indexed by a topological profinite space, and a full treatment of the fundamental pro- \mathcal{C} group of a graph of pro- \mathcal{C} groups.

Part II (Chaps. 7–10) contains applications to the structure of profinite groups. In Chap. 7 we describe subgroups of fundamental groups of graphs of profinite groups; in particular, an analogue of the Kurosh subgroup theorem for open subgroups of free products of pro- \mathcal{C} groups is established. Chapter 8 describes the properties of minimal G-invariant subtrees of a tree on which the group G acts; this is done for profinite as well as abstract groups and graphs. The study of such minimal trees was initiated by Tits when G is cyclic and acts without fixed points on an abstract tree. It turns out that the connections between these types of minimal subtrees in the abstract and profinite cases provides a powerful tool to study certain properties in abstract groups. Chapters 9 and 10 of Part II deal mainly with homology. Chapter 9 includes a theorem of Neukirch and a generalization of Mel'nikov characterizing homologically when a profinite group is the free product of a collection of subgroups continuously indexed by a topological (profinite) space; this plays the role of the usual combinatorial description of free products in the case of abstract groups. This chapter also contains a Kurosh-like theorem for countably generated closed subgroups of free products of pro-p groups due to D. Haran and O. Mel'nikov independently. Chapter 10 includes the well-known theorem of J.-P. Serre that asserts that a torsion-free pro-p group G with an open free pro-p subgroup must be free pro-p. There is also a generalization of this result due to C. Scheiderer, where one allows torsion in G. Using this, the chapter also contains a study of the subgroup of fixed points of an automorphism of a free pro-p group.

Part III (Chaps. 11–15) contains applications to abstract groups. These include generalizations of a theorem of Marshall Hall that asserts that a finitely generated subgroup H of an abstract free group Φ is the intersection of the subgroups of finite index in Φ that contain H; an algorithm to compute the closure of a finitely generated subgroup H of an abstract free group Φ in the pro-p topology of Φ ; and applications to the theory of formal languages and finite monoids. Also included is the study of certain properties that hold for an abstract group if and only if they hold for the finite quotients of that group, e.g., conjugacy separability for an abstract group R: for $x, y \in R$, these elements are conjugate in R if their images are conjugate in every finite quotient group of R.

The book ranges over a large number of areas and results, but we have not intended to make this into an encyclopedia of the subject. Part I gives a fairly complete account of profinite graphs and their connection with profinite groups. However in Part II and, even more, in Part III, I have made a choice of topics to illustrate some results and methods. At the end of each of the three parts of the book there is a section with historical comments on the development of the fundamental ideas and theorems, statements of additional results, references to related topics, and open questions.

In an effort to make the book self-contained, the first chapter includes a review of basic notions and results about profinite spaces, profinite groups and homology that are used frequently throughout the monograph. Appendix A deals with aspects

Preface

of abstract graphs that are of interest in the book. The main purpose has been to develop a terminology common to abstract and profinite graphs. Appendix B contains a proof of a theorem of M. Benois about rational languages in free abstract groups.

I have been indebted to many colleagues during the writing of this book. Throughout the years I have had many mathematical discussions with my longtime collaborator Pavel Zalesskii that have helped to clarify some topics developed here; it is a pleasure to acknowledge with thanks my debt to him. I thank John Dixon, Wolfgang Herfort, Dan Segal and Benjaming Steinberg, who have read parts of the manuscript and have made very useful comments, corrections and suggestions. Jean-Eric Pin has provided helpful references, and I am very grateful to him for this.

This book was written mainly in Ottawa and Madrid. In Ottawa my thanks go to Carleton University for continuous help throughout the years, and for sabbatical periods that have allowed me to concentrate on the writing of his book. In Madrid I have often used the facilities of the Universidad Complutense, the Universidad Autónoma and ICMAT, and I thank all of them for their generosity, and my colleagues at these institutions for their welcome whenever I have spent time with them. Finally, I acknowledge with thanks the continued research support from NSERC.

Madrid-Ottawa March, 2017

Luis Ribes

Contents

Preface			vii
1	Preli	minaries	1
	1.1	Inverse Limits	2
	1.2	Profinite Spaces	3
	1.3		4
		Pseudovarieties C	5
		Generators	6
		G-Spaces and Continuous Sections	6
		Order of a Profinite Group and Sylow Subgroups	7
	1.4		8
	1.5		9
	1.6	Free and Amalgamated Products of Groups	0
	1.7	Profinite Rings and Modules	1
		Exact Sequences	3
		The Functors $Hom(-, -)$	3
			4
	1.8	The Complete Group Algebra	5
		<i>G</i> -Modules	5
		Complete Tensor Products	6
	1.9	The Functors $\operatorname{Ext}_{\Lambda}^{n}(-,-)$ and $\operatorname{Tor}_{n}^{\Lambda}(-,-)$	7
		The Functors $\operatorname{Ext}_{\Lambda}^{n}(-,-)$	7
		The Functors $\operatorname{Tor}_n^{\widehat{\Lambda}}(-,-)$	9
	1.10	Homology and Cohomology of Profinite Groups	0
		Cohomology of Profinite Groups	0
		Special Maps in Cohomology	3
		Homology of Profinite Groups	4
			4
			5
	1.11		5

xii Contents

Par	t I	Basic Theory	
2	Profi	nite Graphs	29
	2.1	First Notions and Examples	29
	2.2	Groups Acting on Profinite Graphs	41
	2.3	The Chain Complex of a Graph	45
	2.4	π -Trees and \mathcal{C} -Trees	48
	2.5	Cayley Graphs and C -Trees	57
3	The 1	Fundamental Group of a Profinite Graph	63
	3.1	Galois Coverings	63
	3.2	$G(\Gamma \Delta)$ as a Subgroup of $Aut(\Gamma)$	72
	3.3	Universal Galois Coverings and Fundamental Groups	74
	3.4	0-Transversals and 0-Sections	77
	3.5	Existence of Universal Coverings	82
	3.6	Subgroups of Fundamental Groups of Graphs	89
	3.7	Universal Coverings and Simple Connectivity	91
	3.8	Fundamental Groups and Projective Groups	95
	3.9	Fundamental Groups of Quotient Graphs	96
	3.10	π -Trees and Simple Connectivity	100
	3.11	Free Pro- \mathcal{C} Groups and Cayley Graphs	105
	3.12	Change of Pseudovariety	107
4	Profinite Groups Acting on C-Trees		
	4.1	Fixed Points	111
	4.2	Faithful and Irreducible Actions	119
5	Free	Products of Pro-C Groups	137
	5.1	Free Pro- \mathcal{C} Products: The External Viewpoint	137
	5.2	Subgroups Continuously Indexed by a Space	145
	5.3	Free Pro-C Products: The Internal Viewpoint	148
	5.4	Profinite G-Spaces vs the Weight $w(G)$ of G	153
	5.5	Basic Properties of Free Pro-C Products	157
	5.6	Free Products and Change of Pseudovariety	164
	5.7	Constant and Pseudoconstant Sheaves	167
6	Grap	ohs of Pro-C Groups	177
	6.1	Graphs of Pro- $\mathcal C$ Groups and Specializations	177
	6.2	The Fundamental Group of a Graph of Pro- $\mathcal C$ Groups	180
		Uniqueness of the Fundamental Group	185
	6.3	The Standard Graph of a Graph of Pro- $\mathcal C$ Groups $\ldots \ldots$	193
	6.4	Injective Graphs of Pro- \mathcal{C} Groups	205
	6.5	Abstract vs Profinite Graphs of Groups	207
	6.6	Action of a Pro- $\mathcal C$ Group on a Profinite Graph with Finite	
	. -	Quotient	213
	6.7	Notes, Comments and Further Reading: Part I	216
		Abstract Graph of Finite Groups (\mathcal{G}, Γ) over an Infinite Graph Γ	218

Contents xiii

Part II		Applications to Profinite Groups	
7	Subg	groups of Fundamental Groups of Graphs of Groups	223
	7.1	Subgroups	223
	7.2	Normal Subgroups	227
	7.3	The Kurosh Theorem for Free Pro- $\mathcal C$ Products	232
8	Mini	imal Subtrees	237
	8.1	Minimal Subtrees: The Abstract Case	238
	8.2	Minimal Subtrees: Abstract vs Profinite Trees	241
		Trees Associated with Virtually Free Groups	242
	8.3	Graphs of Residually Finite Groups and the Tits Line	245
	8.4	Graph of a Free Product of Groups and the Tits Line	250
9	Hom	nology and Graphs of Pro- ${\cal C}$ Groups $\ldots\ldots\ldots\ldots$	257
	9.1	Direct Sums of Modules and Homology	257
	9.2	Corestriction and Continuously Indexed Families of Subgroups	259
	9.3	The Homology Sequence of the Action on a Tree	265
	9.4	Mayer–Vietoris Sequences	267
	9.5	Homological Characterization of Free Pro- <i>p</i> Products	270
	9.6	Pro- p Groups Acting on $\mathcal C$ -Trees and the Kurosh Theorem	272
10	The Virtual Cohomological Dimension of Profinite Groups 2		279
	10.1	Tensor Product of Complexes	279
	10.2	Tensor Product Induction for a Complex	281
	10.3	The Torsion-Free Case	290
	10.4	Groups Virtually of Finite Cohomological Dimension:	201
	10.5	Periodicity	291
	10.5	The Torsion Case	295
	10.6	Pro- p Groups with a Free Subgroup of Index $p \dots \dots$	309
	10.7	Counter Kurosh	312
	10.8	Fixed Points of Automorphisms of Free Pro-p Groups	317
	10.9	Notes, Comments and Further Reading: Part II	322
		M. Hall Pro-p Groups	323
Par	t III	Applications to Abstract Groups	
11	Sepa	rability Conditions in Free and Polycyclic Groups	329
	11.1	Separability Conditions in Abstract Groups	329
	11.2	Subgroup Separability in Free-by-Finite Groups	333
	11.3	Products of Subgroups in Free Abstract Groups	337
	114	Separability Properties of Polycyclic Groups	342

xiv Contents

12	Algor	ithms in Abstract Free Groups and Monoids	349
	12.1	Algorithms for Subgroups of Finite Index	349
	12.2	Closure of Finitely Generated Subgroups in Abstract Free	
		Groups	353
	12.3	Algorithms for Monoids	359
		The Kernel of a Finite Monoid	364
		The Mal'cev Product of Pseudovarieties of Monoids	366
13	Abstr	ract Groups vs Their Profinite Completions	369
	13.1	Free-by-Finite Groups vs Their Profinite Completions	369
	13.2	Polycyclic-by-Finite Groups vs Their Profinite Completions	379
14	Conju	gacy in Free Products and in Free-by-Finite Groups	383
	14.1	Conjugacy Separability in Free-by-Finite Groups	383
	14.2	Conjugacy Subgroup Separability in Free-by-Finite Groups	386
	14.3	Conjugacy Distinguishedness in Free-by-Finite Groups	389
15	Conir	gacy Separability in Amalgamated Products	391
13	15.1	Abstract Free Products with Cyclic Amalgamation	392
	15.1	Normalizers in Amalgamated Products of Groups	396
	15.2	Conjugacy Separability of Amalgamated Products	399
	15.4	Amalgamated Products, Quasi-potency and Subgroup	377
	13.4	Separability	405
	15.5	Amalgamated Products and Products of Cyclic Subgroups	407
	15.6	Amalgamated Products and Normalizers of Cyclic Subgroups .	411
	15.7	Amalgamated Products and Intersections of Cyclic Subgroups .	412
	15.8	Amalgamated Products and Conjugacy Distinguishedness	415
	15.9	Conjugacy Separability of Certain Iterated Amalgamated	
		Products	418
	15.10	Examples of Conjugacy Separable Groups	418
	15.11	Notes, Comments and Further Reading: Part III	422
		Subgroup Separability and Free Products	423
		Conjugacy Separability, Subgroups and Extensions	427
		Conjugacy Distinguished Subgroups	427
App	endix	A Abstract Graphs	429
	A.1	The Fundamental Group of an Abstract Graph	429
		The Star of a Vertex	430
		Paths	430
	A.2	Coverings of Abstract Graphs	435
	A.3	Foldings	441
	A.4	Algorithms	442
		Intersection of Finitely Generated Subgroups	443
	A.5	Notes, Comments and Further Reading	445

Contents	xv
----------	----

Appendix	B Rational Sets in Free Groups and Automata	447
B.1	Finite State Automata: Review and Notation	447
B.2	The Classical Function ρ	448
B.3	Rational Subsets in Free Groups	
B.4	Notes, Comments and Further Reading	
References	s	453
Index of S	ymbols	461
Index of A	uthors	463
Index of To	erms	465