next up previous
Next: About this document ...

Multiple-Choice Questions
Please circle only one answer.
  1. [2 marks] Let $ f(x) = x^3 + \sqrt{x}$. Evaluate $ f^{\prime}(1)$. In other words, find the derivative of $ f$ at $ x=1$.


    (a) $ \displaystyle f^{\prime}(1)=0$ (b) $ \displaystyle f^{\prime}(1)=1.5$ (c) $ \displaystyle f^{\prime}(1)=3.5$ (d) $ \displaystyle f^{\prime}(1)=6$


  2. [2 marks] Let $ \displaystyle f(x) = \ln (\sqrt x)$. Evaluate $ f^{\prime\prime}(2)$. In other words, find the second derivative of $ f$ at $ x= 2$.


    (a) $ \displaystyle f^{\prime\prime}(2)= - \frac{1}{8}$ (b) $ \displaystyle f^{\prime\prime}(2)=0$ (c) $ \displaystyle f^{\prime\prime}(2)=-1$ (d) $ \displaystyle f^{\prime\prime}(2)=\frac{3}{4}$


  3. [2 marks] Let $ f(x) = \vert x-1\vert$. Calculate

    $\displaystyle L = \lim_{h \to 0}\frac{f(1+h) - f(1)}{h}.$

    (a) $ L=0$ (b) This limit does not exist (c) $ L=-1$ (d) $ L=1$


  4. [2 marks] Evaluate the following limit: $ L = \displaystyle \lim_{x \to \infty} x \ \sin \left ( \frac{1}{x} \right)$.


    (a) $ \displaystyle L=1$ (b) $ \displaystyle L=4$ (c) $ \displaystyle L=2$ (d) $ \displaystyle L=-1$


  5. [2 marks] A differentiable function $ f$ has the property that $ f(1) = 6$, $ f^{\prime}(6)=-2$ and $ f^{\prime}(1) = 3$. What is the value of the derivative of $ f(f(x))$ at $ x=1$?


    (a) $ -3$ (b) $ -6$ (c) $ x $ (d) $ 2$


  6. [2 marks] Let $ \displaystyle f(x) = \tan (1+ \sin x)$. Evaluate $ f^{\prime}(x)$. In other words, find the derivative of $ f$ at $ x $.


    (a) $ \displaystyle f^{\prime}(x)= -\sin x \ \sec^2 (\cos x)$ (b) $ \displaystyle f^{\prime}(x)= \sec^2 (1+\sin x)$ (c) $ \displaystyle f^{\prime}(x)= \sec^2 (\sin x)$ (d) $ \displaystyle f^{\prime}(x)=\cos x \ \sec^2 (1+\sin x)$


  7. [2 marks] Let y be given implicitly as a differentiable function of $ x $ by $ x^2\cos y + y^2 - 1 = 0$. Then the slope of the tangent line to the curve $ y = y(x)$ at the point $ (x, y)$ where $ x=0$, $ y=1$ is equal to:


    (a) $ \displaystyle 2$, (b) $ \displaystyle + \infty$, (c) $ \displaystyle \frac{1}{2}$, (d) $ \displaystyle 0$.


  8. [2 marks] Let $ \displaystyle f(x) = \left(x+1\right )^{3x}$. Evaluate $ f^{\prime}(0)$. In other words, find the derivative of $ f$ at $ x=0$.


    (a) $ \displaystyle f^{\prime}(0)= 0$ (b) $ \displaystyle f^{\prime}(0)=1$ (c) $ \displaystyle f^{\prime}(0)= -1$ (d) $ \displaystyle f^{\prime}(0)=12$


  9. [2 marks] Let $ \displaystyle f(x) = {\rm Arcsin} \left ( \cos x^2 \right)$. Calculate $ f^{\prime}(x)$ in the case where $ x $ is a point where $ \sin (x^2) > 0$.


    (a) $ \displaystyle f^{\prime}(x)= -5$ (b) $ \displaystyle f^{\prime}(x)=x$ (c) $ \displaystyle f^{\prime}(x)= -2x$ (d) None of these


  10. [2 marks] Evaluate $ L = \displaystyle \lim_{x \to 0} \left ( \frac{\sin 4x}{\sin 2x} \right)$ using any method.


    (a) $ L=1$ (b) $ L = 1.85$ (c) $ L =2$ (d) $ \displaystyle L = \frac{5}{2}$


  11. [2 marks] Evaluate

    $\displaystyle \lim_{x \to +\infty}{d \over dx}\ \int_{\sqrt 3}^{\sqrt x}{\frac{r^3}{(r+1)(r-1)} \ dr}$


    (a) $ \displaystyle I = 0$
    (b) $ \displaystyle I = \frac{27}{2}$
    (c) This limit does not exist (d) $ \displaystyle I = \frac{1}{2}$


  12. [2 marks] Which of the following functions $ F$ represents the form of the inverse function of the function $ f(x) = \sqrt{x^2-4}$ whose domain is the set of all real numbers $ x $ where $ x \geq 2$.


    (a) $ \displaystyle F(x) = \sqrt{x^2+4} $ where $ Dom(F) = \{ x\ : \ 0 \leq x < +\infty\ \}$
    (b) $ \displaystyle F(x) = - \sqrt{x^2+4}$ where $ Dom(F) = \{ x\ : \ -\infty < x < +\infty\ \}$
    (c) $ \displaystyle F(x) = \sqrt{4 + x^2}$ where $ Dom(F) = \{ x\ : \ -\infty < x < +\infty\ \}$
    (d) $ \displaystyle F(x) = \sqrt{x^2+ x +1}$


  13. [2 marks] Solve the inequality $ \displaystyle x^2-3x+2 < 0$ for $ x $.


    (a) $ \displaystyle \{ x : - 2 < x < -1 \}$
    (b) $ \displaystyle \{ x : 1 < x < 2 \}$
    (c) $ \displaystyle \{ x : -\infty < x < 1 \}$
    (d) $ \displaystyle \{ x : 2 < x < \infty \}$


  14. Determine an interval where the graph of the function defined by the polynomial $ p(x) = x^4 - 6x^3 +12x^2$ is concave up.


    (a) $ \displaystyle \{ x : - 5 < x < 0 \}$
    (b) $ \displaystyle \{ x : -\infty < x < 1.78 \}$
    (c) $ \displaystyle \{ x : 2 < x < \infty \}$
    (d) $ \displaystyle \{ x : 1 < x < 2 \}$


  15. [2 marks] Which of the following functions has a point of inflection at $ x=0$?


    (a) $ \displaystyle f(x) = x^2 + x + 1$
    (b) $ \displaystyle f(x) = -x^2 - 4$
    (c) $ \displaystyle f(x) = 2x^3 + 6 $
    (d) $ \displaystyle f(x) = x^4 + 12$


  16. [2 marks] For what values of $ x $ is the function $ \displaystyle f(x) = \frac{1}{x^2-1}$ increasing?


    (a) $ \displaystyle x > 0$
    (b) $ \displaystyle x < 0$
    (c) $ \displaystyle 0 < x < 1 $
    (d) $ \displaystyle x > 1$


  17. [2 marks] Find all the critical points of $ f(x) = x^3-3x+2$


    (a) $ \displaystyle x=-1, \ x=1$
    (b) $ \displaystyle x=0, \ x=1$
    (c) $ \displaystyle x=-2, x=0 $
    (d) $ \displaystyle x=0, \ x=1, \ x=2$


  18. [2 marks] An antiderivative of $ f(x) = \cos (3x+6)$ is given by


    (a) $ \displaystyle \sin (3x+6)$
    (b) $ \displaystyle -3 \sin (3x+6) $
    (c) $ \displaystyle \frac{\sin (3x+6)}{3}$
    (d) $ \displaystyle \sin (3x^2 + 6x) $


  19. [2 marks] Evaluate $ \displaystyle \int x^2\ 3^{2x^3+1} \ dx$


    (a) $ \displaystyle\frac{\ln 3 \ 3^{2x^3+1}}{6}$
    (b) $ \displaystyle 6x^2 \ 3^{2x^3+1} $
    (c) $ \displaystyle 3^{2x^3+1}$
    (d) $ \displaystyle \frac{3^{2x^3+1}}{6 \ln 3}$


  20. [2 marks] Evaluate $ \displaystyle \int_{0}^{4} x\ \sqrt{2x+1} \ dx$


    (a) $ \displaystyle 9$
    (b) $ \displaystyle \frac{298}{15} $
    (c) $ \displaystyle \frac{3}{4}$
    (d) $ \displaystyle \frac{1}{2}$


  21. [2 marks] The value of $ \displaystyle \int {\frac{dx}{x\ln x}}$ is


    (a) $ \displaystyle \ln ( \ln x ) \ +\ C$
    (b) $ \displaystyle \ln \ln \vert x \vert \ +\ C$
    (c) $ \displaystyle \ln \vert x\vert + C$
    (d) $ \displaystyle \ln \vert \ln x \ \vert + C$


  22. [2 marks] The most general antiderivative of $ x^2\ e^{3x}$ is given by


    (a) $ \displaystyle \frac{1}{3}x^2\ e^{3x}-\frac{2}{9}x\ e^{3x}+\frac{2}{27}\ e^{3x}\ +\ C$
    (b) $ \displaystyle \frac{1}{9}x^3\ e^{3x} \ + \ C$
    (c) $ \displaystyle \frac{1}{9}x^2\ e^{3x} + C$
    (d) $ \displaystyle \frac{1}{3}x^2\ e^{3x}-\frac{2}{9}x\ e^{3x}+ C$


  23. [2 marks] Evaluate and simplify the indefinite integral: $ \displaystyle \int{e^{2x}\ \sin {3x}\ dx}$.


    (a) $ \displaystyle - \frac{9}{13}\ e^{2x}\ \cos 3x - \frac{2}{13}\ e^{2x}\ \sin 3x\ +\ C$
    (b) $ \displaystyle \frac{1}{13}\ e^{2x}\ \cos 3x + \frac{1}{13}\ e^{2x}\ \sin 3x\ +\ C$
    (c) $ \displaystyle \frac{2}{13}\ e^{3x}\ \cos 2x + \frac{9}{13}\ e^{3x}\ \sin 2x\ +\ C$
    (d) $ \displaystyle - \frac{3}{13}\ e^{2x}\ \cos 3x + \frac{2}{13}\ e^{2x}\ \sin 3x\ +\ C$


  24. [2 marks] Evaluate the improper integral $ \displaystyle \int_{0}^{\infty}{x^3\ e^{-x}\ dx}$.


    (a) $ \displaystyle 6 $
    (b) $ \displaystyle -8$
    (c) $ \displaystyle 0$
    (d) $ \displaystyle 1$


  25. [2 marks] The form of the partial fraction decomposition of the rational function

    $\displaystyle \frac{x-1}{(x^2+1)(x^2 - 2x - 3)}$

    is


    (a) $ \displaystyle \frac{A}{x^2+1} + \frac{C}{x-3} $
    (b) $ \displaystyle \frac{Ax+B}{x^2+1} + \frac{C}{x-3} +\frac{D}{x+1}$
    (c) $ \displaystyle \frac{A}{x-1} + \frac{B}{x+1} +\frac{C}{x-3}$
    (d) $ \displaystyle \frac{Ax+B}{x^2+1} + \frac{C}{x+3} +\frac{D}{x+1}$
    where $ A, B, C, D$ are constants to be determined.


  26. [2 marks] Evaluate the indefinite trigonometric integral

    $\displaystyle \int{\sin^3 x \ \cos^2 x\ dx}.$


    (a) $ \displaystyle \frac{\sin^4 x\ \cos^2 x}{4} +\ C$
    (b) $ \displaystyle \frac{\sin^3 x\ \cos^3 x}{3} +\ C$
    (c) $ \displaystyle \frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + \ C$
    (d) $ \displaystyle \frac{\sin^5 x}{5} - \frac{\sin^3 x}{3} + \ C$
    where $ A, B, C, D$ are constants to be determined.


  27. [2 marks] The area enclosed by the intersection of the two curves defined by $ y = 1 - x$ and $ y= 2x^2$ is given by which of the following definite integrals?


    (a) $ \displaystyle \int_{-1}^{\frac{1}{2}}{(2x^2 - 1) \ dx}$
    (b) $ \displaystyle \int_{-1}^{\frac{1}{2}}{\left (1- x - 2x^2 \right) \ dx}$
    (c) $ \displaystyle \int_{-1}^{\frac{1}{2}}{\left (2x^2 - x +1 \right) \ dx}$
    (d) $ \displaystyle \int_{-1}^{2}{\left (x - 2x^2 \right) \ dx}$


  28. [2 marks] Which of the following expressions gives the volume of the solid of revolution obtained when the region bounded by the graphs of $ y = 2x$ and $ y = 4x^2 $ is revolved about the $ y-$axis?


    (a) $ \displaystyle I = \int_{0}^{\frac{1}{2}}{2\pi (2x - 4x^2)\ dx}$
    (b) $ \displaystyle I = \int_{0}^{\frac{1}{2}}{2\pi x\ (4x^2-16x^4) \ dx}$
    (c) $ \displaystyle I = \int_{0}^{\frac{1}{2}}{2\pi x\ (2x- 4x^2)\ dx}$
    (d) $ \displaystyle I = \int_{0}^{1}{2\pi y \ (\sqrt y - y)\ dy}$


  29. [2 marks] The center of mass of a thin quarter circle of radius $ R$ having uniform density and situated in the first quadrant is given by which of the following points?


    (a) $ \displaystyle \left (\frac{4\pi}{R}, \frac{4\pi}{R} \right )$
    (b) $ \displaystyle \left (\frac{4R}{3\pi}, \frac{4R}{3\pi} \right )$
    (c) $ \displaystyle \left (\frac{\pi}{R}, \frac{\pi}{R} \right )$
    (d) $ \displaystyle \left (\frac{R}{\pi}, \frac{R}{\pi} \right )$


  30. [2 marks] The general solution of the differential equation

    $\displaystyle y^2 \frac{dy}{dt} = t^2 e^{-y^3} \ln t$

    is given by,


    (a) $ \displaystyle \frac{1}{3}e^{y^3} = \frac{1}{3}t^3 \ln t - \frac{t^3}{9} + C$
    (b) $ \displaystyle e^{y^3} = \frac{1}{2}t^2 \ln {2t} +\frac{1}{9}e^{t} + C$
    (c) $ \displaystyle \frac{1}{3}e^{y^3} = \frac{1}{2}t^2 \ln t - t + C$ (d) $ \displaystyle e^{y^2}= \frac{1}{3}t^3 \ln t - \frac{t^3}{9} + C$


Extra Pages for Rough Work: DO NOT UNSTAPLE Extra Pages for Rough Work: DO NOT UNSTAPLE Extra Pages for Rough Work: DO NOT UNSTAPLE Extra Pages for Rough Work: DO NOT UNSTAPLE


next up previous
Next: About this document ...
Angelo Mingarelli
2001-11-28